Spaces:
Running
Running
File size: 22,989 Bytes
1cc2077 25f445b b90013e dc9c8a6 4826928 df66c51 1cc2077 b696eae 1cc2077 3e6bf0e a2e6203 1cc2077 edb9d91 6ba85f3 edb9d91 3624a97 1cc2077 2781be6 d10decd 72f465f 1cc2077 edb9d91 b2a0931 cdf41df 11d1b83 cdf41df 11d1b83 cdf41df edb9d91 b363799 95a2e58 b972165 7f7ea9c edb9d91 56d7438 7f7ea9c 72f465f edb9d91 e1bfbc1 edb9d91 7f7ea9c 72f465f 1cc2077 edb9d91 90fcb15 edb9d91 b696eae 37c0c8d 8cc60a4 b20cd7e edb9d91 6ba85f3 edb9d91 b696eae edb9d91 b696eae 22b691b 87921bb 01432f8 22b691b 01432f8 22b691b 01432f8 b0c3a0a 22b691b 01432f8 976e284 b0c3a0a 01432f8 22b691b c24ce1d 22b691b c24ce1d 22b691b c24ce1d 22b691b c24ce1d 6ba85f3 edb9d91 0d373ec edb9d91 0d373ec edb9d91 6ba85f3 126b728 6ba85f3 126b728 cb78c9b 8e77a26 cb78c9b 6ba85f3 126b728 6ba85f3 126b728 6ba85f3 edb9d91 6ba85f3 1cc2077 b90013e edb9d91 1cc2077 edb9d91 524ef7e 582b7cb 6ba85f3 1963dd6 6ba85f3 5ca345c 1963dd6 5ca345c 582b7cb c0e572f 582b7cb c0e572f 582b7cb 922b47b 582b7cb 922b47b 582b7cb ddebd27 582b7cb f3ba799 874660e fb3de8a 582b7cb f3ba799 739a9d0 f3ba799 bd797c7 874660e bd797c7 7d7e727 f3ba799 d06f804 582b7cb ddebd27 582b7cb edb9d91 51bfc88 edb9d91 c0e572f edb9d91 6ba85f3 edb9d91 0d373ec 5ec7168 edb9d91 6ba85f3 5ec7168 edb9d91 5ec7168 edb9d91 d77b45c edb9d91 5ec7168 edb9d91 5ec7168 d77b45c 5ec7168 51bfc88 5ec7168 6962b8e 5ec7168 d77b45c 5ec7168 edb9d91 51bfc88 edb9d91 51bfc88 5ec7168 51bfc88 5ec7168 edb9d91 5ec7168 edb9d91 0d373ec 51bfc88 edb9d91 1cc2077 fe897f2 edb9d91 fe897f2 edb9d91 1cc2077 edb9d91 6ba85f3 1b91391 edb9d91 d280876 b696eae d280876 b696eae d280876 1cc2077 6ba85f3 1cc2077 b90013e 1cc2077 6ba85f3 126b728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
sys.path.append('./src')
sys.path.append('.')
from huggingface_hub import HfApi
repo_id = "HUBioDataLab/PROBE"
api = HfApi()
from src.about import *
from src.saving_utils import *
from src.vis_utils import *
from src.bin.PROBE import run_probe
# ------------------------------------------------------------------
# Helper functions --------------------------------------------------
# ------------------------------------------------------------------
def add_new_eval(
human_file,
skempi_file,
model_name_textbox: str,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
save,
):
"""Validate inputs, run evaluation and (optionally) save results."""
# map the userβfacing labels back to the original codes
try:
benchmark_types_mapped = [benchmark_type_map[b] for b in benchmark_types]
similarity_tasks_mapped = [similarity_tasks_map[s] for s in similarity_tasks]
function_prediction_aspect_mapped = function_prediction_aspect_map[function_prediction_aspect]
family_prediction_dataset_mapped = [family_prediction_dataset_map[f] for f in family_prediction_dataset]
except KeyError as e:
gr.Warning(f"Unrecognized option: {e.args[0]}")
return -1
# validate inputs
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
return -1
if 'affinity' in benchmark_types and skempi_file is None:
gr.Warning("SKEMPI representations are required for affinity benchmark!")
return -1
gr.Info("Your submission is being processedβ¦")
representation_name = model_name_textbox
try:
results = run_probe(
benchmark_types,
representation_name,
human_file,
skempi_file,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
)
except Exception:
gr.Warning("Your submission has not been processed. Please check your representation files!")
return -1
if save:
save_results(representation_name, benchmark_types, results)
gr.Info("Your submission has been processed and results are saved!")
else:
gr.Info("Your submission has been processed!")
return 0
def refresh_data():
"""Reβstart the space and pull fresh leaderboard CSVs from the HF Hub."""
api.restart_space(repo_id=repo_id)
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
for benchmark_type in benchmark_types:
path = f"/tmp/{benchmark_type}_results.csv"
if os.path.exists(path):
os.remove(path)
benchmark_types.remove("leaderboard")
download_from_hub(benchmark_types)
# ------- Leaderboard helpers -----------------------------------------------
def update_metrics(selected_benchmarks):
updated_metrics = set()
for benchmark in selected_benchmarks:
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
return list(updated_metrics)
def update_leaderboard(selected_methods, selected_metrics):
return build_leaderboard_styler(selected_methods, selected_metrics)
def colour_method_html(name: str) -> str:
"""Return the method string wrapped in a coloured <span>. Handles raw names
or markdown links like '[T5](https://β¦)' transparently."""
colour = color_dict.get(re.sub(r"\[|\]|\(.*?\)", "", name), "black") # strip md link
return f"<span style='color:{colour}; font-weight:bold;'>{name}</span>"
# darkest β lightest green
TOP5_GREENS = ["#006400", "#228B22", "#32CD32", "#7CFC00", "#ADFF2F"]
def shade_top5(col: pd.Series) -> list[str]:
"""Return a CSS list for one column: background for ranks 1-5, blank else."""
if not pd.api.types.is_numeric_dtype(col):
return [""] * len(col)
ranks = col.rank(ascending=False, method="first")
return [
f"background-color:{TOP5_GREENS[int(r)-1]};" if r <= 5 else ""
for r in ranks
]
def build_leaderboard_styler(selected_methods=None, selected_metrics=None):
df = get_baseline_df(selected_methods, selected_metrics).round(4)
# 1οΈβ£ colour method names via inline-HTML
df["Method"] = df["Method"].apply(colour_method_html)
numeric_cols = [c for c in df.columns if c != "Method"]
# 2οΈβ£ add the green gradient only to numeric cols
styler = (
df.style
.apply(shade_top5, axis=0, subset=numeric_cols)
.format(precision=4) # keep numbers tidy
)
return styler
# ------- Visualisation helpers ---------------------------------------------
def generate_plot(benchmark_type, methods_selected, x_metric, y_metric, aspect, dataset, single_metric):
plot_path = benchmark_plot(
benchmark_type,
methods_selected,
x_metric,
y_metric,
aspect,
dataset,
single_metric,
)
return plot_path
# ---------------------------------------------------------------------------
# Custom CSS for frozen first column and clearer table styles
# ---------------------------------------------------------------------------
CUSTOM_CSS = """
/* freeze first column */
#leaderboard-table table tr th:first-child,
#leaderboard-table table tr td:first-child {
position: sticky;
left: 0;
z-index: 2;
/* wider βMethodβ column */
min-width: 190px;
width: 190px;
white-space: nowrap;
}
/* centre numeric cells */
#leaderboard-table td:not(:first-child) {
text-align: center;
}
/* scrollable and taller table */
#leaderboard-table .dataframe-wrap {
max-height: 1200px;
overflow-y: auto;
overflow-x: auto;
}
"""
# ---------------------------------------------------------------------------
# UI definition
# ---------------------------------------------------------------------------
block = gr.Blocks(css=CUSTOM_CSS)
with block:
gr.Markdown(LEADERBOARD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# ------------------------------------------------------------------
# 1οΈβ£ Leaderboard tab
# ------------------------------------------------------------------
with gr.TabItem("π
PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
# ββ header ββββββββββββββββββββββββββββββββββββββββββββββββββββ
gr.Image(
value="./src/data/PROBE_workflow_figure.jpg",
show_label=False,
height=1000,
container=False,
)
gr.Markdown(
"## For detailed explanations of the metrics and benchmarks, please refer to the π About tab.",
elem_classes="leaderboard-note",
)
# ββ data prep ββββββββββββββββββββββββββββββββββββββββββββββββ
leaderboard = get_baseline_df(None, None)
method_names = leaderboard["Method"].unique().tolist()
metric_names = leaderboard.columns.tolist(); metric_names.remove("Method")
base_method_names = [m for m in method_names if m in base_methods]
user_method_names = [m for m in method_names if m not in base_methods]
benchmark_metric_mapping = {
"Semantic Similarity Inference": [m for m in metric_names if m.startswith("sim_")],
"Ontology-based Protein Function Prediction": [m for m in metric_names if m.startswith("func")],
"Drug Target Protein Family Classification": [m for m in metric_names if m.startswith("fam_")],
"Protein-Protein Binding Affinity Estimation": [m for m in metric_names if m.startswith("aff_")],
}
# ββ callback helper ββββββββββββββββββββββββββββββββββββββββββ
def update_leaderboard_combined(selected_base, selected_user, selected_metrics):
selected_methods = (selected_base or []) + (selected_user or [])
return build_leaderboard_styler(selected_methods, selected_metrics)
# ββ collapsible selectors ββββββββββββββββββββββββββββββββββββ
with gr.Accordion("π¦ Base Methods", open=False):
leaderboard_method_selector_base = gr.CheckboxGroup(
choices=base_method_names,
label="Base Methods",
value=base_method_names, # β all selected
interactive=True,
)
with gr.Accordion("π οΈ User-defined Methods", open=False):
leaderboard_method_selector_user = gr.CheckboxGroup(
choices=user_method_names,
label="User Methods",
value=[], # β none selected
interactive=True,
)
with gr.Accordion("π§ͺ Benchmark Types", open=False):
benchmark_type_selector_lb = gr.CheckboxGroup(
choices=list(benchmark_metric_mapping.keys()),
label="Benchmark Types",
value=list(benchmark_metric_mapping.keys()), # all selected
interactive=True,
)
with gr.Accordion("π Metrics", open=False):
leaderboard_metric_selector = gr.CheckboxGroup(
choices=metric_names,
label="Select Metrics",
value=metric_names, # β all selected
interactive=True,
)
# ββ colour / shading legend (unchanged) ββββββββββββββββββββββ
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
## Method-name colours
<span style='color:green; font-weight:bold; font-size:1.1rem;'>π’β Classical representations
<span style='color:blue; font-weight:bold; font-size:1.1rem;'>π΅β Small-scale Protein LMs
<span style='color:red; font-weight:bold; font-size:1.1rem;'>π΄β Large-scale Protein LMs
<span style='color:orange;font-weight:bold; font-size:1.1rem;'>π β Multimodal Protein LMs
""",
elem_classes="leaderboard-note",
)
with gr.Column(scale=1):
gr.Markdown(
"""
## Metric-cell shading
<span style='background-color:#006400; color:white; padding:0.4rem 0.8rem; border-radius:0.4rem;
font-size:1.1rem; display:inline-block; text-align:center; margin-right:0.2rem;'>1</span>
<span style='background-color:#228B22; color:white; padding:0.4rem 0.8rem; border-radius:0.4rem;
font-size:1.1rem; display:inline-block; text-align:center; margin-right:0.2rem;'>2</span>
<span style='background-color:#32CD32; color:black; padding:0.4rem 0.8rem; border-radius:0.4rem;
font-size:1.1rem; display:inline-block; text-align:center; margin-right:0.2rem;'>3</span>
<span style='background-color:#7CFC00; color:black; padding:0.4rem 0.8rem; border-radius:0.4rem;
font-size:1.1rem; display:inline-block; text-align:center; margin-right:0.2rem;'>4</span>
<span style='background-color:#ADFF2F; color:black; padding:0.4rem 0.8rem; border-radius:0.4rem;
font-size:1.1rem; display:inline-block; text-align:center;'>5</span>
<br>
<span style='font-size:1.1rem;'> top-five scores (darker β better)</span>
""",
elem_classes="leaderboard-note",
)
# ββ dataframe ββββββββββββββββββββββββββββββββββββββββββββββββ
styler = build_leaderboard_styler(base_method_names, metric_names)
data_component = gr.Dataframe(
value=styler,
headers=["Method"] + metric_names,
type="pandas",
datatype=["markdown"] + ["number"] * len(metric_names),
interactive=False,
elem_id="leaderboard-table",
pinned_columns=1,
max_height=1000,
show_fullscreen_button=True,
)
gr.Markdown("#### If a method name ends with **^**, it suggests potential suspicions of data leakage related to ***similarity***, ***function***, or ***family*** benchmarks.")
# ββ callbacks ββββββββββββββββββββββββββββββββββββββββββββββββ
leaderboard_method_selector_base.change(
update_leaderboard_combined,
inputs=[leaderboard_method_selector_base, leaderboard_method_selector_user, leaderboard_metric_selector],
outputs=data_component,
)
leaderboard_method_selector_user.change(
update_leaderboard_combined,
inputs=[leaderboard_method_selector_base, leaderboard_method_selector_user, leaderboard_metric_selector],
outputs=data_component,
)
leaderboard_metric_selector.change(
update_leaderboard_combined,
inputs=[leaderboard_method_selector_base, leaderboard_method_selector_user, leaderboard_metric_selector],
outputs=data_component,
)
benchmark_type_selector_lb.change(
lambda selected: update_metrics(selected),
inputs=[benchmark_type_selector_lb],
outputs=leaderboard_metric_selector,
)
# ------------------------------------------------------------------
# 2οΈβ£ Visualisation tab
# ------------------------------------------------------------------
with gr.TabItem("π Visualization", elem_id="probe-benchmark-tab-visualization", id=2):
gr.Markdown(
"""## **Interactive Visualizations**
Choose a benchmark type; context-specific options will appear.""",
elem_classes="markdown-text",
)
# ββ benchmark-type selector ββββββββββββββββββββββββββββββββββ
vis_benchmark_type_selector = gr.Dropdown(
choices=list(benchmark_specific_metrics.keys()),
label="π§ͺ Benchmark Type",
value=None,
)
# ββ metric / dataset selectors (appear contextually) βββββββββ
with gr.Row():
vis_x_metric_selector = gr.Dropdown(choices=[], label="X-axis Metric", visible=False)
vis_y_metric_selector = gr.Dropdown(choices=[], label="Y-axis Metric", visible=False)
vis_aspect_type_selector = gr.Dropdown(choices=[], label="Aspect", visible=False)
vis_dataset_selector = gr.Dropdown(choices=[], label="Dataset", visible=False)
vis_single_metric_selector = gr.Dropdown(choices=[], label="Metric", visible=False)
# ββ method selectors (two accordions) βββββββββββββββββββββββ
base_method_names = [m for m in method_names if m in base_methods]
user_method_names = [m for m in method_names if m not in base_methods]
with gr.Accordion("π¦ Base methods", open=False):
vis_method_selector_base = gr.CheckboxGroup(
choices=base_method_names,
label="Base Methods",
value=base_method_names, # default: all selected
interactive=True,
)
with gr.Accordion("π οΈ User-defined methods", open=False):
vis_method_selector_user = gr.CheckboxGroup(
choices=user_method_names,
label="User Methods",
value=[], # default: none selected
interactive=True,
)
# ββ plot button & output ββββββββββββββββββββββββββββββββββββ
plot_button = gr.Button("Plot")
with gr.Row(show_progress=True, variant='panel'):
plot_output = gr.Image(label="Plot")
gr.Markdown("#### If a method name ends with **^**, it suggests potential suspicions of data leakage related to ***similarity***, ***function***, or ***family*** benchmarks.")
# ββ callbacks βββββββββββββββββββββββββββββββββββββββββββββββ
vis_benchmark_type_selector.change(
update_metric_choices,
inputs=[vis_benchmark_type_selector],
outputs=[
vis_x_metric_selector,
vis_y_metric_selector,
vis_aspect_type_selector,
vis_dataset_selector,
vis_single_metric_selector,
],
)
# combine the two method lists, then call the original helper
plot_button.click(
lambda bt, base_sel, user_sel, xm, ym, asp, ds, sm: generate_plot(
bt,
(base_sel or []) + (user_sel or []), # merged method list
xm, ym, asp, ds, sm,
),
inputs=[
vis_benchmark_type_selector,
vis_method_selector_base,
vis_method_selector_user,
vis_x_metric_selector,
vis_y_metric_selector,
vis_aspect_type_selector,
vis_dataset_selector,
vis_single_metric_selector,
],
outputs=[plot_output],
)
# ------------------------------------------------------------------
# 3οΈβ£ About tab
# ------------------------------------------------------------------
with gr.TabItem("π About", elem_id="probe-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Image(
value="./src/data/PROBE_workflow_figure.jpg",
label="PROBE Workflow Figure",
elem_classes="about-image",
)
# ------------------------------------------------------------------
# 4οΈβ£ Submit tab
# ------------------------------------------------------------------
with gr.TabItem("π Submit here! ", elem_id="probe-benchmark-tab-table", id=4):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model's representation files here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Method name")
benchmark_types = gr.CheckboxGroup(choices=TASK_INFO, label="Benchmark Types", interactive=True)
similarity_tasks = gr.CheckboxGroup(choices=similarity_tasks_options, label="Similarity Tasks", interactive=True)
function_prediction_aspect = gr.Radio(choices=function_prediction_aspect_options, label="Function Prediction Aspects", interactive=True)
family_prediction_dataset = gr.CheckboxGroup(choices=family_prediction_dataset_options, label="Family Prediction Datasets", interactive=True)
function_dataset = gr.Textbox(label="Function Prediction Datasets", visible=False, value="All_Data_Sets")
save_checkbox = gr.Checkbox(label="Save results for leaderboard and visualization", value=True)
with gr.Row():
human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath')
skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
human_file,
skempi_file,
model_name_textbox,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_dataset,
family_prediction_dataset,
save_checkbox,
],
)
# global refresh + citation ---------------------------------------------
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(refresh_data, outputs=[data_component])
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
# ---------------------------------------------------------------------------
block.launch() |