File size: 1,271 Bytes
2531827 24ea58e 2531827 24ea58e 2531827 24ea58e 2531827 24ea58e 2531827 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator # Import Accelerator from the accelerate library
def main():
st.title("Chatbot with Hugging Face Model")
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Create an Accelerator instance
accelerator = Accelerator()
# Use the Accelerator for initializing the model
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=accelerator.device)
user_input = st.text_input("User Input:", "What is your favourite condiment?")
if st.button("Generate Response"):
messages = [
{"role": "user", "content": user_input},
{"role": "assistant", "content": "Placeholder assistant message"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(accelerator.device)
# Use the Accelerator for generating outputs
with accelerator.device():
outputs = model.generate(inputs, max_new_tokens=20)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.text_area("Assistant's Response:", response)
if __name__ == "__main__":
main()
|