File size: 20,837 Bytes
14de029
8d9f842
 
fd3ecfb
26be8c4
0ce6f4c
2150861
f69b08f
26be8c4
457c927
26be8c4
b486176
b99907f
 
be58931
b99907f
 
 
 
 
 
 
 
8d9f842
14de029
 
 
 
e45be51
0ce6f4c
1af9c54
0ce6f4c
3aa2252
 
 
 
 
 
 
 
 
b99907f
14de029
3aa2252
b99907f
3aa2252
b99907f
3aa2252
b33582e
37613ae
26be8c4
 
be58931
26be8c4
 
 
 
 
 
b99907f
 
 
3aa2252
b99907f
3aa2252
 
26be8c4
b99907f
26be8c4
 
0be7f95
457c927
b99907f
457c927
 
 
 
26be8c4
 
4b635e1
b99907f
 
457c927
 
 
26be8c4
457c927
 
 
 
4b635e1
04b4cc9
3f52579
720cf20
 
b99907f
457c927
 
 
3f52579
457c927
 
 
7dd4b60
 
457c927
 
 
3f52579
7dd4b60
 
457c927
4b635e1
b99907f
26be8c4
 
72f5340
 
 
7dd4b60
 
 
457c927
 
26be8c4
72f5340
 
5a8da17
 
 
11c09d2
5a8da17
7dd4b60
5a8da17
d080468
5a8da17
7dd4b60
 
5a8da17
 
 
 
72f5340
26be8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457c927
 
 
7dd4b60
 
26be8c4
457c927
da19eb4
7dd4b60
457c927
4192108
7dd4b60
26be8c4
72f5340
 
 
 
 
 
 
 
26be8c4
 
 
 
457c927
26be8c4
 
 
 
 
 
72f5340
26be8c4
da19eb4
be58931
 
0b312c9
 
 
be58931
 
0b312c9
be58931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b312c9
be58931
0b312c9
be58931
 
 
 
 
 
 
 
 
 
 
0b312c9
be58931
0b312c9
be58931
 
 
 
 
0b312c9
be58931
 
 
 
 
 
 
 
 
 
 
 
0b312c9
be58931
 
0b312c9
be58931
0b312c9
 
a8c778e
72f5340
 
be58931
0b312c9
 
11c09d2
 
be58931
11c09d2
5a8da17
11c09d2
a8c778e
be58931
 
 
 
5a8da17
be58931
72f5340
3217754
be58931
3217754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be58931
3217754
 
 
be58931
72f5340
b486176
 
 
 
 
 
4192108
b486176
 
 
 
 
 
 
 
7dd4b60
b486176
7dd4b60
 
 
b486176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b99907f
7dd4b60
 
b486176
7dd4b60
b486176
 
72f5340
 
 
4192108
 
 
 
72f5340
 
b99907f
 
 
 
 
 
 
b486176
8d9f842
be58931
 
 
 
 
 
 
 
 
 
 
 
3217754
be58931
 
 
 
 
71b2d6f
 
be58931
 
 
71b2d6f
 
 
 
 
 
 
be58931
 
 
 
 
 
 
 
 
 
 
 
 
71b2d6f
be58931
 
 
 
71b2d6f
a8c778e
be58931
 
 
71b2d6f
be58931
 
 
 
 
 
 
b33582e
 
 
 
3aa2252
 
 
 
 
 
 
3217754
3aa2252
 
 
 
 
 
 
 
 
c523152
3aa2252
 
 
 
 
 
 
 
 
f5e82c8
3aa2252
 
 
 
 
 
 
 
72f5340
 
b486176
 
72f5340
b486176
3aa2252
b33582e
3aa2252
 
 
 
3217754
3aa2252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33582e
 
 
 
b486176
 
b33582e
0f3261d
8d9f842
4192108
 
 
 
 
 
 
 
 
 
 
7dd4b60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import os
import gradio as gr
from ultralytics import YOLO
from fastapi import FastAPI
from PIL import Image
import torch
import spaces
import numpy as np
import cv2
from pathlib import Path
import tempfile
import imageio
from tqdm import tqdm
import logging
import torch.nn.functional as F

# 新增: 配置logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)

# 从环境变量获取密码
APP_USERNAME = "admin"  # 用户名保持固定
APP_PASSWORD = os.getenv("APP_PASSWORD", "default_password")  # 从环境变量获取密码

app = FastAPI()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = YOLO('kunin-mice-pose.v0.1.5n.pt')

# 定义认证状态
class AuthState:
    def __init__(self):
        self.is_logged_in = False

auth_state = AuthState()

def login(username, password):
    """登录验证"""
    logger.info(f"用户尝试登录: {username}")
    if username == APP_USERNAME and password == APP_PASSWORD:
        auth_state.is_logged_in = True
        logger.info("登录成功")
        return gr.update(visible=False), gr.update(visible=True), "登录成功"
    logger.warning("登录失败:用户名或密码错误")
    return gr.update(visible=True), gr.update(visible=False), "用户名或密码错误"

@spaces.GPU(duration=300)
def process_video(video_path, process_seconds=20, conf_threshold=0.2, max_det=8):
    """
    处理视频并进行��鼠检测
    Args:
        video_path: 输入视频路径
        process_seconds: 处理时长(秒)
        conf_threshold: 置信度阈值(0-1)
        max_det: 每帧最大检测数量
    """
    logger.info(f"开始处理视频: {video_path}")
    logger.info(f"参数设置 - 处理时长: {process_seconds}秒, 置信度阈值: {conf_threshold}, 最大检测数: {max_det}")
    
    if not auth_state.is_logged_in:
        logger.warning("用户未登录,拒绝访问")
        return None, "请先登录"
    
    # 创建临时目录保存输出视频
    logger.info("创建临时输出目录")
    with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
        output_path = tmp_file.name
    
    # 获取视频信息
    logger.info("读取视频信息")
    cap = cv2.VideoCapture(video_path)
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(process_seconds * fps) if process_seconds else int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cap.release()
    
    logger.info(f"视频信息 - FPS: {fps}, 分辨率: {width}x{height}, 总帧数: {total_frames}")
    
    # 创建视频写入器
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    video_writer = cv2.VideoWriter(
        output_path, 
        fourcc, 
        fps, 
        (width, height)
    )
    
    # 计算基于分辨率的线宽
    base_size = min(width, height)
    line_thickness = max(1, int(base_size * 0.002))  # 0.2% 的最小边长

    logger.info("开始YOLO模型推理")
    results = model.predict(
        source=video_path,
        device=device,
        conf=conf_threshold,
        save=False,
        show=False,
        stream=True,
        line_width=line_thickness,
        boxes=True,
        show_labels=True,
        show_conf=True,
        vid_stride=1,
        max_det=max_det,
        retina_masks=True,
        verbose=False  # 关闭YOLO默认日志输出
    )
    
    logger.info("开始处理检测结果")
    frame_count = 0
    detection_info = []
    all_positions = []
    heatmap = np.zeros((height, width), dtype=np.float32)
    
    # 新增: 创建进度条
    pbar = tqdm(total=total_frames, desc="处理视频", unit="帧")
    
    for r in results:
        frame = r.plot()
        
        # 收集位置信息
        if hasattr(r, 'keypoints') and r.keypoints is not None:
            kpts = r.keypoints.data
            if isinstance(kpts, torch.Tensor):
                kpts = kpts.cpu().numpy()
            
            if kpts.shape == (1, 8, 3):  # [num_objects, num_keypoints, xyz]
                x, y = int(kpts[0, 0, 0]), int(kpts[0, 0, 1])
                all_positions.append([x, y])
                
                if 0 <= x < width and 0 <= y < height:
                    sigma = 10
                    kernel_size = 31
                    temp_heatmap = np.zeros((height, width), dtype=np.float32)
                    temp_heatmap[y, x] = 1
                    temp_heatmap = cv2.GaussianBlur(temp_heatmap, (kernel_size, kernel_size), sigma)
                    heatmap += temp_heatmap
        
        # 收集检测信息
        frame_info = {
            "frame": frame_count + 1,
            "count": len(r.boxes),
            "detections": []
        }
        
        for box in r.boxes:
            conf = float(box.conf[0])
            cls = int(box.cls[0])
            cls_name = r.names[cls]
            frame_info["detections"].append({
                "class": cls_name,
                "confidence": f"{conf:.2%}"
            })
        
        detection_info.append(frame_info)
        video_writer.write(frame)
        
        frame_count += 1
        pbar.update(1)  # 更新进度条
        
        if process_seconds and frame_count >= total_frames:
            break
    
    pbar.close()  # 关闭进度条
    video_writer.release()
    logger.info(f"视频处理完成,共处理 {frame_count} 帧")

    # 生成分析报告
    confidences = [float(det['confidence'].strip('%'))/100 for info in detection_info for det in info['detections']]
    hist, bins = np.histogram(confidences, bins=5)
    
    confidence_report = "\n".join([
        f"置信度 {bins[i]:.2f}-{bins[i+1]:.2f}: {hist[i]:3d}个检测 ({hist[i]/len(confidences)*100:.1f}%)"
        for i in range(len(hist))
    ])
    
    report = f"""视频分析报告:
参数设置:
- 置信度阈值: {conf_threshold:.2f}
- 最大检测数量: {max_det}
- 处理时长: {process_seconds}
分析结果:
- 处理帧数: {frame_count}
- 平均每帧检测到的老鼠数: {np.mean([info['count'] for info in detection_info]):.1f}
- 最大检测数: {max([info['count'] for info in detection_info])}
- 最小检测数: {min([info['count'] for info in detection_info])}
置信度分布:
{confidence_report}
"""
    
    def filter_trajectories_gpu(positions, width, height, max_jump_distance=100):
        """GPU加速版本的轨迹过滤"""
        if len(positions) < 3:
            return positions
        
        # 转换为GPU张量
        points = torch.tensor(positions, device=device, dtype=torch.float32)
        
        # 计算相邻点之间的距离
        diffs = points[1:] - points[:-1]
        distances = torch.norm(diffs, dim=1)
        
        # 找出需要插值的位置
        mask = distances > max_jump_distance
        valid_indices = (~mask).nonzero().squeeze()
        
        if len(valid_indices) < 2:
            return positions
        
        # 使用GPU进行插值
        filtered_points = []
        last_valid_idx = 0
        
        for i in range(len(valid_indices)-1):
            curr_idx = valid_indices[i].item()
            next_idx = valid_indices[i+1].item()
            
            filtered_points.append(points[curr_idx].tolist())
            
            if next_idx - curr_idx > 1:
                # 线性插值
                steps = max(2, int((next_idx - curr_idx)))
                interp_points = torch.linspace(0, 1, steps)
                start_point = points[curr_idx]
                end_point = points[next_idx]
                
                interpolated = start_point[None] * (1 - interp_points[:, None]) + \
                             end_point[None] * interp_points[:, None]
                
                filtered_points.extend(interpolated[1:-1].tolist())
        
        filtered_points.append(points[valid_indices[-1]].tolist())
        
        # 平滑处理
        if len(filtered_points) >= 5:
            points_tensor = torch.tensor(filtered_points, device=device)
            kernel_size = 5
            padding = kernel_size // 2
            
            # 使用1D卷积进行平滑
            weights = torch.ones(1, 1, kernel_size, device=device) / kernel_size
            smoothed_x = F.conv1d(
                points_tensor[:, 0].view(1, 1, -1), 
                weights, 
                padding=padding
            ).squeeze()
            smoothed_y = F.conv1d(
                points_tensor[:, 1].view(1, 1, -1), 
                weights, 
                padding=padding
            ).squeeze()
            
            smoothed_points = torch.stack([smoothed_x, smoothed_y], dim=1)
            return smoothed_points.cpu().numpy().tolist()
        
        return filtered_points

    # 修改轨迹图生成部分
    trajectory_img = torch.ones((height, width, 3), device=device, dtype=torch.float32)
    points = np.array(all_positions, dtype=np.int32)
    if len(points) > 1:
        filtered_points = filter_trajectories_gpu(points.tolist(), width, height)
        points = np.array(filtered_points, dtype=np.int32)
        
        for i in range(len(points) - 1):
            ratio = i / (len(points) - 1)
            color = torch.tensor([
                int((1 - ratio) * 255),  # B
                50,                      # G
                int(ratio * 255)         # R
            ], device=device, dtype=torch.float32)
            
            # 使用GPU绘制线段
            pt1, pt2 = points[i], points[i + 1]
            draw_line_gpu(trajectory_img, pt1, pt2, color, 2)
        
        trajectory_img = trajectory_img.cpu().numpy().astype(np.uint8)
    
    # 修改热力图生成部分
    if torch.cuda.is_available():
        logger.info("使用GPU生成热力图")
        try:
            heatmap = torch.zeros((height, width), device=device)
            for pos in filtered_points:
                # 确保坐标是整数并且在有效范围内
                x, y = map(int, pos)  # 明确转换为整数
                if 0 <= x < width and 0 <= y < height:
                    temp_heatmap = torch.zeros((height, width), device=device)
                    temp_heatmap[int(y), int(x)] = 1  # 再次确保是整数
                    # 使用GPU的高斯模糊
                    temp_heatmap = gaussian_blur_gpu(temp_heatmap, kernel_size=31, sigma=10)
                    heatmap += temp_heatmap
            
            heatmap = heatmap.cpu().numpy()
        except Exception as e:
            logger.error(f"GPU热力图生成失败: {str(e)}")
            # 回退到CPU处理
            logger.info("切换到CPU生成热力图")
            heatmap = np.zeros((height, width), dtype=np.float32)
            for pos in filtered_points:
                x, y = map(int, pos)
                if 0 <= x < width and 0 <= y < height:
                    temp_heatmap = np.zeros((height, width), dtype=np.float32)
                    temp_heatmap[int(y), int(x)] = 1
                    temp_heatmap = cv2.GaussianBlur(temp_heatmap, (31, 31), 10)
                    heatmap += temp_heatmap
    else:
        logger.info("使用CPU生成热力图")
        heatmap = np.zeros((height, width), dtype=np.float32)
        for pos in filtered_points:
            x, y = map(int, pos)
            if 0 <= x < width and 0 <= y < height:
                temp_heatmap = np.zeros((height, width), dtype=np.float32)
                temp_heatmap[int(y), int(x)] = 1
                temp_heatmap = cv2.GaussianBlur(temp_heatmap, (31, 31), 10)
                heatmap += temp_heatmap
    
    trajectory_frames = []
    heatmap_frames = []
    
    base_trajectory = np.zeros((height, width, 3), dtype=np.uint8) + 255
    base_heatmap = np.zeros((height, width), dtype=np.float32)
    
    frame_interval = max(1, len(filtered_points) // 30)
    
    for i in range(0, len(filtered_points), frame_interval):
        current_points = filtered_points[:i+1]
        
        frame_trajectory = base_trajectory.copy()
        if len(current_points) > 1:
            points = np.array(current_points, dtype=np.int32)
            for j in range(len(points) - 1):
                ratio = j / (len(current_points) - 1)
                color = (
                    int((1 - ratio) * 255),
                    50,
                    int(ratio * 255)
                )
                cv2.line(frame_trajectory, tuple(points[j]), tuple(points[j + 1]), color, 2)
            
            cv2.circle(frame_trajectory, tuple(points[-1]), 8, (0, 0, 255), -1)
        trajectory_frames.append(frame_trajectory)
        
        frame_heatmap = base_heatmap.copy()
        for x, y in current_points:
            if 0 <= x < width and 0 <= y < height:
                temp_heatmap = np.zeros((height, width), dtype=np.float32)
                temp_heatmap[y, x] = 1
                temp_heatmap = cv2.GaussianBlur(temp_heatmap, (31, 31), 10)
                frame_heatmap += temp_heatmap
        
        if np.max(frame_heatmap) > 0:
            frame_heatmap_norm = cv2.normalize(frame_heatmap, None, 0, 255, cv2.NORM_MINMAX)
            frame_heatmap_color = cv2.applyColorMap(frame_heatmap_norm.astype(np.uint8), cv2.COLORMAP_JET)
            frame_heatmap_color = cv2.addWeighted(frame_heatmap_color, 0.7, np.full_like(frame_heatmap_color, 255), 0.3, 0)
            heatmap_frames.append(frame_heatmap_color)

    logger.info("开始生成轨迹图和热力图")
    trajectory_gif_path = output_path.replace('.mp4', '_trajectory.gif')
    heatmap_gif_path = output_path.replace('.mp4', '_heatmap.gif')
    
    imageio.mimsave(trajectory_gif_path, trajectory_frames, duration=50)
    imageio.mimsave(heatmap_gif_path, heatmap_frames, duration=50)
    
    trajectory_path = output_path.replace('.mp4', '_trajectory.png')
    heatmap_path = output_path.replace('.mp4', '_heatmap.png')
    cv2.imwrite(trajectory_path, trajectory_img)
    if np.max(heatmap) > 0:
        heatmap_normalized = cv2.normalize(heatmap, None, 0, 255, cv2.NORM_MINMAX)
        heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), cv2.COLORMAP_JET)
        heatmap_colored = cv2.addWeighted(heatmap_colored, 0.7, np.full_like(heatmap_colored, 255), 0.3, 0)
    cv2.imwrite(heatmap_path, heatmap_colored)
    
    logger.info("轨迹图和热力图生成完成")
    logger.info("开始生成GIF动画")
    imageio.mimsave(trajectory_gif_path, trajectory_frames, duration=50)
    imageio.mimsave(heatmap_gif_path, heatmap_frames, duration=50)
    logger.info("GIF动画生成完成")

    logger.info("所有处理完成,准备返回结果")
    return output_path, trajectory_path, heatmap_path, trajectory_gif_path, heatmap_gif_path, report

def gaussian_blur_gpu(tensor, kernel_size=31, sigma=10):
    """GPU版本的高斯模糊"""
    channels = 1
    kernel = get_gaussian_kernel2d(kernel_size, sigma).to(device)
    kernel = kernel.view(1, 1, kernel_size, kernel_size)
    tensor = tensor.view(1, 1, tensor.shape[0], tensor.shape[1])
    
    return F.conv2d(tensor, kernel, padding=kernel_size//2).squeeze()

def get_gaussian_kernel2d(kernel_size, sigma):
    """生成2D高斯核"""
    kernel_x = torch.linspace(-kernel_size//2, kernel_size//2, kernel_size)
    x, y = torch.meshgrid(kernel_x, kernel_x, indexing='ij')
    kernel = torch.exp(-(x.pow(2) + y.pow(2)) / (2 * sigma ** 2))
    return kernel / kernel.sum()

def draw_line_gpu(image, pt1, pt2, color, thickness=1):
    """GPU版本的线段绘制"""
    x1, y1 = map(int, pt1)  # 确保是整数
    x2, y2 = map(int, pt2)  # 确保是整数
    dx = abs(x2 - x1)
    dy = abs(y2 - y1)
    
    # 防止除零错误
    steps = max(dx, dy)
    if steps == 0:
        # 如果是同一个点,直接画点
        if 0 <= x1 < image.shape[1] and 0 <= y1 < image.shape[0]:
            image[y1, x1] = color
        return
    
    x_inc = (x2 - x1) / steps
    y_inc = (y2 - y1) / steps
    
    x = x1
    y = y1
    
    points = torch.zeros((int(steps) + 1, 2), device=device)
    for i in range(int(steps) + 1):
        points[i] = torch.tensor([x, y])
        x += x_inc
        y += y_inc
    
    points = points.long()  # 转换为整数类型
    valid_points = (points[:, 0] >= 0) & (points[:, 0] < image.shape[1]) & \
                  (points[:, 1] >= 0) & (points[:, 1] < image.shape[0])
    points = points[valid_points]
    
    color = color.to(image.dtype)
    
    if thickness > 1:
        for dx in range(-thickness//2, thickness//2 + 1):
            for dy in range(-thickness//2, thickness//2 + 1):
                offset_points = points + torch.tensor([dx, dy], device=device, dtype=torch.long)
                valid_offset = (offset_points[:, 0] >= 0) & (offset_points[:, 0] < image.shape[1]) & \
                             (offset_points[:, 1] >= 0) & (offset_points[:, 1] < image.shape[0])
                offset_points = offset_points[valid_offset]
                image[offset_points[:, 1], offset_points[:, 0]] = color
    else:
        image[points[:, 1], points[:, 0]] = color

# 创建 Gradio 界面
with gr.Blocks() as demo:
    gr.Markdown("# 🐁 小鼠行为分析 (Mice Behavior Analysis)")
    
    with gr.Group() as login_interface:
        username = gr.Textbox(label="用户名")
        password = gr.Textbox(label="密码", type="password")
        login_button = gr.Button("登录")
        login_msg = gr.Textbox(label="消息", interactive=False)
    
    with gr.Group(visible=False) as main_interface:
        gr.Markdown("上传视频来检测和分析小鼠行为 | Upload a video to detect and analyze mice behavior")
        
        with gr.Row():
            with gr.Column():
                video_input = gr.Video(label="输入视频")
                process_seconds = gr.Number(
                    label="处理时长(秒,0表示处理整个视频)", 
                    value=20
                )
                conf_threshold = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.2,
                    step=0.05,
                    label="置信度阈值",
                    info="越高越严格,建议范围0.2-0.5"
                )
                max_det = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=1,
                    step=1,
                    label="最大检测数量",
                    info="每帧最多检测的目标数量"
                )
                process_btn = gr.Button("开始处理")
            
            with gr.Column():
                video_output = gr.Video(label="检测结果")
                with gr.Row():
                    trajectory_output = gr.Image(label="运动轨迹")
                    trajectory_gif_output = gr.Image(label="轨迹动画")
                with gr.Row():
                    heatmap_output = gr.Image(label="热力图")
                    heatmap_gif_output = gr.Image(label="热力图动画")
                report_output = gr.Textbox(label="分析报告")
        
        gr.Markdown("""
        ### 使用说明
        1. 上传视频文件
        2. 设置处理参数:
           - 处理时间:需要分析的视频时长(秒)
           - 置信度阈值:检测的置信度要求(越高越严格)
           - 最大检测数量:每帧最多检测的目标数量
        3. 等待处理完成
        4. 查看检测结果视频和分析报告
        
        ### 注意事项
        - 支持常见视频格式(mp4, avi 等)
        - 建议视频分辨率不超过 1920x1080
        - 处理时间与视频长度和分辨率相关
        - 置信度建议范围:0.2-0.5
        - 最大检测数量建议根据实际场景设置
        """)
    
    login_button.click(
        fn=login,
        inputs=[username, password],
        outputs=[login_interface, main_interface, login_msg]
    )
    
    process_btn.click(
        fn=process_video,
        inputs=[video_input, process_seconds, conf_threshold, max_det],
        outputs=[video_output, trajectory_output, heatmap_output, 
                trajectory_gif_output, heatmap_gif_output, report_output]
    )

if __name__ == "__main__":
    try:
        # GPU相关操作
        if torch.cuda.is_available():
            logger.info("使用GPU进行轨迹和热力图计算")
            # ... GPU操作 ...
        else:
            logger.info("使用CPU进行轨迹和热力图计算")
            # ... CPU操作 ...
    except Exception as e:
        logger.error(f"处理轨迹和热力图时出错: {str(e)}")
        raise
    demo.launch(server_name="0.0.0.0", server_port=7860)