File size: 17,401 Bytes
14de029
8d9f842
 
fd3ecfb
26be8c4
0ce6f4c
2150861
f69b08f
26be8c4
457c927
26be8c4
b486176
8d9f842
14de029
 
 
 
e45be51
0ce6f4c
743135f
0ce6f4c
3aa2252
 
 
 
 
 
 
 
 
14de029
3aa2252
 
 
b33582e
37613ae
26be8c4
 
 
 
 
 
 
 
 
3aa2252
 
 
26be8c4
 
 
0be7f95
457c927
 
 
 
 
26be8c4
 
4b635e1
457c927
 
 
26be8c4
457c927
 
 
 
4b635e1
04b4cc9
3f52579
720cf20
 
26be8c4
457c927
 
 
3f52579
457c927
 
 
720cf20
04b4cc9
457c927
 
 
3f52579
5e8c2f6
8b79e99
457c927
4b635e1
26be8c4
 
 
 
72f5340
 
 
 
457c927
 
26be8c4
72f5340
 
5a8da17
 
 
11c09d2
5a8da17
 
 
 
d080468
5a8da17
 
 
 
 
 
 
 
 
72f5340
26be8c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457c927
 
 
 
 
26be8c4
457c927
da19eb4
26be8c4
457c927
da19eb4
26be8c4
72f5340
 
 
 
 
 
 
 
26be8c4
 
 
 
457c927
72f5340
26be8c4
 
 
 
 
72f5340
26be8c4
72f5340
26be8c4
da19eb4
0b312c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f5340
 
 
0b312c9
 
 
 
11c09d2
 
 
5a8da17
11c09d2
 
5a8da17
11c09d2
 
 
 
72f5340
11c09d2
5a8da17
 
 
 
 
 
 
 
 
 
 
72f5340
5a8da17
 
 
 
 
 
 
72f5340
b486176
 
 
 
 
 
 
 
 
 
 
 
 
 
099444b
b486176
 
 
 
099444b
b486176
 
 
 
 
 
 
 
 
 
 
099444b
b486176
 
 
 
 
 
 
 
 
 
 
099444b
b486176
 
 
bf53aee
 
 
b486176
 
 
 
72f5340
 
 
 
 
 
b486176
8d9f842
b33582e
 
 
 
3aa2252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c523152
3aa2252
 
 
 
 
 
 
 
 
f5e82c8
3aa2252
 
 
 
 
 
 
 
72f5340
 
b486176
 
72f5340
b486176
3aa2252
b33582e
3aa2252
 
 
 
b486176
3aa2252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b33582e
 
 
 
b486176
 
b33582e
0f3261d
8d9f842
0b312c9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import os
import gradio as gr
from ultralytics import YOLO
from fastapi import FastAPI
from PIL import Image
import torch
import spaces
import numpy as np
import cv2
from pathlib import Path
import tempfile
import imageio

# 从环境变量获取密码
APP_USERNAME = "admin"  # 用户名保持固定
APP_PASSWORD = os.getenv("APP_PASSWORD", "default_password")  # 从环境变量获取密码

app = FastAPI()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = YOLO('kunin-mice-pose.v0.1.4.pt')

# 定义认证状态
class AuthState:
    def __init__(self):
        self.is_logged_in = False

auth_state = AuthState()

def login(username, password):
    """登录验证"""
    if username == APP_USERNAME and password == APP_PASSWORD:
        auth_state.is_logged_in = True
        return gr.update(visible=False), gr.update(visible=True), "登录成功"
    return gr.update(visible=True), gr.update(visible=False), "用户名或密码错误"

@spaces.GPU(duration=300)
def process_video(video_path, process_seconds=20, conf_threshold=0.2, max_det=8):
    """
    处理视频并进行小鼠检测
    Args:
        video_path: 输入视频路径
        process_seconds: 处理时长(秒)
        conf_threshold: 置信度阈值(0-1)
        max_det: 每帧最大检测数量
    """
    if not auth_state.is_logged_in:
        return None, "请先登录"
    
    # 创建临时目录保存输出视频
    with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
        output_path = tmp_file.name
    
    # 获取视频信息
    cap = cv2.VideoCapture(video_path)
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(process_seconds * fps) if process_seconds else int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    cap.release()
    
    # 创建视频写入器
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    video_writer = cv2.VideoWriter(
        output_path, 
        fourcc, 
        fps, 
        (width, height)
    )
    
    # 计算基于分辨率的线宽
    base_size = min(width, height)
    line_thickness = max(1, int(base_size * 0.002))  # 0.2% 的最小边长

    # 设置推理参数并处理视频
    results = model.predict(
        source=video_path,
        device=device,
        conf=conf_threshold,
        save=False,
        show=False,
        stream=True,
        line_width=line_thickness,  # 线宽
        boxes=True,  # 显示边界框
        show_labels=True,
        show_conf=True,
        vid_stride=1,
        max_det=max_det,
        retina_masks=True,  # 更精细的显示
        verbose=False
    )
    
    # 处理结果
    frame_count = 0
    detection_info = []
    
    # 用于记录轨迹和热图数据
    all_positions = []
    heatmap = np.zeros((height, width), dtype=np.float32)
    
    for r in results:
        frame = r.plot()
        
        # 收集位置信息
        if hasattr(r, 'keypoints') and r.keypoints is not None:
            kpts = r.keypoints.data
            if isinstance(kpts, torch.Tensor):
                kpts = kpts.cpu().numpy()
            
            # 取第一个检测目标的第一个关键点(通常是头部)
            if kpts.shape == (1, 8, 3):  # [num_objects, num_keypoints, xyz]
                x, y = int(kpts[0, 0, 0]), int(kpts[0, 0, 1])  # 使用第一个关键点
                all_positions.append([x, y])
                
                # 更新热图,使用高斯核来平滑
                if 0 <= x < width and 0 <= y < height:
                    # 创建高斯核心点
                    sigma = 10  # 调整这个值来改变热点大小
                    kernel_size = 31  # 必须是奇数
                    temp_heatmap = np.zeros((height, width), dtype=np.float32)
                    temp_heatmap[y, x] = 1
                    temp_heatmap = cv2.GaussianBlur(temp_heatmap, (kernel_size, kernel_size), sigma)
                    heatmap += temp_heatmap
        
        # 收集检测信息
        frame_info = {
            "frame": frame_count + 1,
            "count": len(r.boxes),
            "detections": []
        }
        
        for box in r.boxes:
            conf = float(box.conf[0])
            cls = int(box.cls[0])
            cls_name = r.names[cls]
            frame_info["detections"].append({
                "class": cls_name,
                "confidence": f"{conf:.2%}"
            })
        
        detection_info.append(frame_info)
        
        # 写入视频
        video_writer.write(frame)
        
        frame_count += 1
        if process_seconds and frame_count >= total_frames:
            break
    
    # 释放视频写入器
    video_writer.release()
    
    # 生成分析报告
    confidences = [float(det['confidence'].strip('%'))/100 for info in detection_info for det in info['detections']]
    hist, bins = np.histogram(confidences, bins=5)
    
    confidence_report = "\n".join([
        f"置信度 {bins[i]:.2f}-{bins[i+1]:.2f}: {hist[i]:3d}个检测 ({hist[i]/len(confidences)*100:.1f}%)"
        for i in range(len(hist))
    ])
    
    report = f"""视频分析报告:
参数设置:
- 置信度阈值: {conf_threshold:.2f}
- 最大检测数量: {max_det}
- 处理时长: {process_seconds}

分析结果:
- 处理帧数: {frame_count}
- 平均每帧检测到的老鼠数: {np.mean([info['count'] for info in detection_info]):.1f}
- 最大检测数: {max([info['count'] for info in detection_info])}
- 最小检测数: {min([info['count'] for info in detection_info])}

置信度分布:
{confidence_report}
"""
    
    # 在生成轨迹图之前,添加异常点过滤和轨迹平滑
    def filter_trajectories(positions, width, height, max_jump_distance=100):
        """
        过滤轨迹中的异常点
        Args:
            positions: 位置列表 [[x1,y1], [x2,y2],...]
            width: 视频宽度
            height: 视频高度
            max_jump_distance: 允许的最大跳跃距离
        """
        if len(positions) < 3:
            return positions
        
        filtered_positions = []
        last_valid_pos = None
        
        for i, pos in enumerate(positions):
            x, y = pos
            
            # 检查点是否在有效范围内
            if not (0 <= x < width and 0 <= y < height):
                continue
            
            # 第一个有效点
            if last_valid_pos is None:
                filtered_positions.append(pos)
                last_valid_pos = pos
                continue
            
            # 计算与上一个点的距离
            distance = np.sqrt((x - last_valid_pos[0])**2 + (y - last_valid_pos[1])**2)
            
            if distance > max_jump_distance:
                # 如果距离太大,进行插值
                if len(filtered_positions) > 0:
                    # 寻找下一个有效点
                    next_valid_pos = None
                    for next_pos in positions[i:]:
                        nx, ny = next_pos
                        if (0 <= nx < width and 0 <= ny < height):
                            next_distance = np.sqrt((nx - last_valid_pos[0])**2 + (ny - last_valid_pos[1])**2)
                            if next_distance <= max_jump_distance:
                                next_valid_pos = next_pos
                                break
                    
                    if next_valid_pos is not None:
                        # 线性插值
                        steps = max(2, int(distance / max_jump_distance))
                        for j in range(1, steps):
                            alpha = j / steps
                            interp_x = int(last_valid_pos[0] * (1 - alpha) + next_valid_pos[0] * alpha)
                            interp_y = int(last_valid_pos[1] * (1 - alpha) + next_valid_pos[1] * alpha)
                            filtered_positions.append([interp_x, interp_y])
                        filtered_positions.append(next_valid_pos)
                        last_valid_pos = next_valid_pos
            else:
                filtered_positions.append(pos)
                last_valid_pos = pos
        
        # 使用移动平均平滑轨迹
        window_size = 5
        smoothed_positions = []
        
        if len(filtered_positions) >= window_size:
            # 添加开始的点
            smoothed_positions.extend(filtered_positions[:window_size//2])
            
            # 平滑中间的点
            for i in range(window_size//2, len(filtered_positions) - window_size//2):
                window = filtered_positions[i-window_size//2:i+window_size//2+1]
                smoothed_x = int(np.mean([p[0] for p in window]))
                smoothed_y = int(np.mean([p[1] for p in window]))
                smoothed_positions.append([smoothed_x, smoothed_y])
            
            # 添加结束的点
            smoothed_positions.extend(filtered_positions[-window_size//2:])
        else:
            smoothed_positions = filtered_positions
        
        return smoothed_positions

    # 修改轨迹图生成部分
    trajectory_img = np.zeros((height, width, 3), dtype=np.uint8) + 255  # 白色背景
    points = np.array(all_positions, dtype=np.int32)
    if len(points) > 1:
        # 过滤和平滑轨迹
        filtered_points = filter_trajectories(points.tolist(), width, height)
        points = np.array(filtered_points, dtype=np.int32)
        
        # 绘制轨迹线,使用渐变色
        for i in range(len(points) - 1):
            ratio = i / (len(points) - 1)
            # 使用从蓝到红的渐变色
            color = (
                int((1 - ratio) * 255),  # B
                50,                      # G
                int(ratio * 255)         # R
            )
            cv2.line(trajectory_img, tuple(points[i]), tuple(points[i + 1]), color, 2)
        
        # 绘制起点和终点
        cv2.circle(trajectory_img, tuple(points[0]), 8, (0, 255, 0), -1)  # 绿色起点
        cv2.circle(trajectory_img, tuple(points[-1]), 8, (0, 0, 255), -1)  # 红色终点
        
        # 每隔一定帧数添加方向箭头
        arrow_interval = max(len(points) // 20, 1)  # 控制箭头数量
        for i in range(0, len(points) - arrow_interval, arrow_interval):
            pt1 = tuple(points[i])
            pt2 = tuple(points[i + arrow_interval])
            # 计算箭头方向
            angle = np.arctan2(pt2[1] - pt1[1], pt2[0] - pt1[0])
            # 绘制箭头
            cv2.arrowedLine(trajectory_img, pt1, pt2, (100, 100, 100), 1, tipLength=0.2)
    
    # 处理热图
    if np.max(heatmap) > 0:  # 确保有数据
        heatmap_normalized = cv2.normalize(heatmap, None, 0, 255, cv2.NORM_MINMAX)
        heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), cv2.COLORMAP_JET)
        # 添加一些透明度
        alpha = 0.7
        heatmap_colored = cv2.addWeighted(heatmap_colored, alpha, np.full_like(heatmap_colored, 255), 1-alpha, 0)
    
    # 准备GIF动画帧
    trajectory_frames = []
    heatmap_frames = []
    
    # 创建基础图像
    base_trajectory = np.zeros((height, width, 3), dtype=np.uint8) + 255
    base_heatmap = np.zeros((height, width), dtype=np.float32)
    
    # 每N帧生成一个动画帧
    frame_interval = max(1, len(filtered_points) // 50)  # 控制GIF帧数
    
    for i in range(0, len(filtered_points), frame_interval):
        current_points = filtered_points[:i+1]
        
        # 轨迹动画帧 - 修改颜色方案,与静态图保持一致
        frame_trajectory = base_trajectory.copy()
        if len(current_points) > 1:
            points = np.array(current_points, dtype=np.int32)
            for j in range(len(points) - 1):
                ratio = j / (len(current_points) - 1)  # 修改这里,使用当前总长度
                color = (
                    int((1 - ratio) * 255),  # B
                    50,                       # G
                    int(ratio * 255)          # R
                )
                cv2.line(frame_trajectory, tuple(points[j]), tuple(points[j + 1]), color, 2)
            
            # 绘制当前位置点
            cv2.circle(frame_trajectory, tuple(points[-1]), 8, (0, 0, 255), -1)
        trajectory_frames.append(frame_trajectory)
        
        # 热图动画帧 - 修改颜色方案,使用与静态图相同的配色
        frame_heatmap = base_heatmap.copy()
        for x, y in current_points:
            if 0 <= x < width and 0 <= y < height:
                temp_heatmap = np.zeros((height, width), dtype=np.float32)
                temp_heatmap[y, x] = 1
                temp_heatmap = cv2.GaussianBlur(temp_heatmap, (31, 31), 10)
                frame_heatmap += temp_heatmap
        
        if np.max(frame_heatmap) > 0:
            frame_heatmap_norm = cv2.normalize(frame_heatmap, None, 0, 255, cv2.NORM_MINMAX)
            frame_heatmap_color = cv2.applyColorMap(frame_heatmap_norm.astype(np.uint8), cv2.COLORMAP_JET)
            # 添加白色背景,与静态图保持一致
            frame_heatmap_color = cv2.addWeighted(frame_heatmap_color, 0.7, np.full_like(frame_heatmap_color, 255), 0.3, 0)
            heatmap_frames.append(frame_heatmap_color)

    # 保存GIF动画 - 修改这部分
    trajectory_gif_path = output_path.replace('.mp4', '_trajectory.gif')  # 使用.gif后缀
    heatmap_gif_path = output_path.replace('.mp4', '_heatmap.gif')  # 使用.gif后缀
    
    imageio.mimsave(trajectory_gif_path, trajectory_frames, duration=50)  # 50ms per frame
    imageio.mimsave(heatmap_gif_path, heatmap_frames, duration=50)
    
    # 保存图像
    trajectory_path = output_path.replace('.mp4', '_trajectory.png')
    heatmap_path = output_path.replace('.mp4', '_heatmap.png')
    cv2.imwrite(trajectory_path, trajectory_img)
    cv2.imwrite(heatmap_path, heatmap_colored)
    
    return output_path, trajectory_path, heatmap_path, trajectory_gif_path, heatmap_gif_path, report

# 创建 Gradio 界面
with gr.Blocks() as demo:
    gr.Markdown("# 🐁 小鼠行为分析 (Mice Behavior Analysis)")
    
    # 登录界面
    with gr.Group() as login_interface:
        username = gr.Textbox(label="用户名")
        password = gr.Textbox(label="密码", type="password")
        login_button = gr.Button("登录")
        login_msg = gr.Textbox(label="消息", interactive=False)
    
    # 主界面
    with gr.Group(visible=False) as main_interface:
        gr.Markdown("上传视频来检测和分析小鼠行为 | Upload a video to detect and analyze mice behavior")
        
        with gr.Row():
            with gr.Column():
                video_input = gr.Video(label="输入视频")
                process_seconds = gr.Number(
                    label="处理时长(秒,0表示处理整个视频)", 
                    value=20
                )
                conf_threshold = gr.Slider(
                    minimum=0.0,
                    maximum=1.0,
                    value=0.2,
                    step=0.05,
                    label="置信度阈值",
                    info="越高越严格,建议范围0.2-0.5"
                )
                max_det = gr.Slider(
                    minimum=1,
                    maximum=10,
                    value=1,
                    step=1,
                    label="最大检测数量",
                    info="每帧最多检测的目标数量"
                )
                process_btn = gr.Button("开始处理")
            
            with gr.Column():
                video_output = gr.Video(label="检测结果")
                with gr.Row():
                    trajectory_output = gr.Image(label="运动轨迹")
                    trajectory_gif_output = gr.Image(label="轨迹动画")
                with gr.Row():
                    heatmap_output = gr.Image(label="热力图")
                    heatmap_gif_output = gr.Image(label="热力图动画")
                report_output = gr.Textbox(label="分析报告")
        
        gr.Markdown("""
        ### 使用说明
        1. 上传视频文件
        2. 设置处理参数:
           - 处理时长:需要分析的视频时长(秒
           - 置信度阈值:检测的置信度要求(越高越严格)
           - 最大检测数量:每帧最多检测的目标数量
        3. 等待处理完成
        4. 查看检测结果视频和分析报告
        
        ### 注意事项
        - 支持常见视频格式(mp4, avi 等)
        - 建议视频分辨率不超过 1920x1080
        - 处理时间与视频长度和分辨率相关
        - 置信度建议范围:0.2-0.5
        - 最大检测数量建议根据实际场景设置
        """)
    
    # 设置事件处理
    login_button.click(
        fn=login,
        inputs=[username, password],
        outputs=[login_interface, main_interface, login_msg]
    )
    
    process_btn.click(
        fn=process_video,
        inputs=[video_input, process_seconds, conf_threshold, max_det],
        outputs=[video_output, trajectory_output, heatmap_output, 
                trajectory_gif_output, heatmap_gif_output, report_output]
    )

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)