Spaces:
Sleeping
Sleeping
File size: 12,970 Bytes
14de029 8d9f842 fd3ecfb 26be8c4 0ce6f4c 2150861 f69b08f 26be8c4 457c927 26be8c4 b99907f 8d9f842 14de029 e45be51 0ce6f4c 2ee8a2f 318f570 2ee8a2f 0ce6f4c 3aa2252 14de029 3aa2252 b33582e 2ee8a2f 26be8c4 72f82cd 26be8c4 2ee8a2f b99907f 3aa2252 2ee8a2f 26be8c4 0be7f95 2ee8a2f 457c927 26be8c4 4b635e1 2ee8a2f b99907f 2ee8a2f 457c927 26be8c4 457c927 4b635e1 3f52579 2ee8a2f 720cf20 2ee8a2f 457c927 3f52579 457c927 7dd4b60 457c927 3f52579 7dd4b60 2ee8a2f 457c927 4b635e1 26be8c4 72f5340 2ee8a2f 7dd4b60 457c927 26be8c4 72f5340 5a8da17 11c09d2 2ee8a2f 7dd4b60 5a8da17 d080468 5a8da17 7dd4b60 5a8da17 72f5340 26be8c4 457c927 2ee8a2f 7dd4b60 26be8c4 457c927 da19eb4 2ee8a2f 457c927 2ee8a2f 72f5340 26be8c4 457c927 26be8c4 72f5340 26be8c4 da19eb4 2ee8a2f 0b312c9 2ee8a2f be58931 2ee8a2f 0b312c9 2ee8a2f 0b312c9 2ee8a2f 0b312c9 2ee8a2f 0b312c9 2ee8a2f 0b312c9 2ee8a2f 0b312c9 2ee8a2f 0b312c9 2ee8a2f 0b312c9 2ee8a2f 72f5340 2ee8a2f 0b312c9 11c09d2 2ee8a2f 5a8da17 2ee8a2f 72f82cd 2ee8a2f ed63729 2ee8a2f b486176 2ee8a2f 72f5340 2ee8a2f be58931 b33582e 2ee8a2f b33582e 3aa2252 3217754 3aa2252 2ee8a2f 3aa2252 f5e82c8 3aa2252 2ee8a2f 3aa2252 72f5340 3aa2252 b33582e 3aa2252 2ee8a2f 3aa2252 b33582e 2ee8a2f b33582e 0f3261d 8d9f842 7dd4b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import os
import gradio as gr
from ultralytics import YOLO
from fastapi import FastAPI
from PIL import Image
import torch
import spaces
import numpy as np
import cv2
from pathlib import Path
import tempfile
from tqdm import tqdm
# 从环境变量获取密码
APP_USERNAME = "admin" # 用户名保持固定
APP_PASSWORD = os.getenv("APP_PASSWORD", "default_password") # 从环境变量获取密码
app = FastAPI()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"使用设备: {device}")
model = YOLO('kunin-mice-pose.v0.1.5n.engine')
print("模型加载完成")
# 定义认证状态
class AuthState:
def __init__(self):
self.is_logged_in = False
auth_state = AuthState()
def login(username, password):
"""登录验证"""
if username == APP_USERNAME and password == APP_PASSWORD:
auth_state.is_logged_in = True
return gr.update(visible=False), gr.update(visible=True), "登录成功"
return gr.update(visible=True), gr.update(visible=False), "用户名或密码错误"
@spaces.GPU(duration=120)
def process_video(video_path, process_seconds=20, conf_threshold=0.2, max_det=8):
"""
处理视频并进行小鼠检测
"""
print("开始处理视频...")
if not auth_state.is_logged_in:
return None, "请先登录"
print("创建临时输出文件...")
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
output_path = tmp_file.name
print("读取视频信息...")
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(process_seconds * fps) if process_seconds else int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
print(f"视频信息: {width}x{height} @ {fps}fps, 总帧数: {total_frames}")
print("初始化视频写入器...")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(
output_path,
fourcc,
fps,
(width, height)
)
base_size = min(width, height)
line_thickness = max(1, int(base_size * 0.002))
print("开始YOLO推理...")
results = model.predict(
source=video_path,
device=device,
conf=conf_threshold,
save=False,
show=False,
stream=True,
line_width=line_thickness,
boxes=True,
show_labels=True,
show_conf=True,
vid_stride=1,
max_det=max_det,
retina_masks=True,
verbose=False
)
frame_count = 0
detection_info = []
all_positions = []
heatmap = np.zeros((height, width), dtype=np.float32)
print("处理检测结果...")
progress_bar = tqdm(total=total_frames, desc="处理帧")
for r in results:
frame = r.plot()
if hasattr(r, 'keypoints') and r.keypoints is not None:
kpts = r.keypoints.data
if isinstance(kpts, torch.Tensor):
kpts = kpts.cpu().numpy()
if kpts.shape == (1, 8, 3):
x, y = int(kpts[0, 0, 0]), int(kpts[0, 0, 1])
all_positions.append([x, y])
if 0 <= x < width and 0 <= y < height:
sigma = 10
kernel_size = 31
temp_heatmap = np.zeros((height, width), dtype=np.float32)
temp_heatmap[y, x] = 1
temp_heatmap = cv2.GaussianBlur(temp_heatmap, (kernel_size, kernel_size), sigma)
heatmap += temp_heatmap
frame_info = {
"frame": frame_count + 1,
"count": len(r.boxes),
"detections": []
}
for box in r.boxes:
conf = float(box.conf[0])
cls = int(box.cls[0])
cls_name = r.names[cls]
frame_info["detections"].append({
"class": cls_name,
"confidence": f"{conf:.2%}"
})
detection_info.append(frame_info)
video_writer.write(frame)
frame_count += 1
progress_bar.update(1)
if process_seconds and frame_count >= total_frames:
break
progress_bar.close()
print("视频处理完成")
video_writer.release()
print("生成分析报告...")
confidences = [float(det['confidence'].strip('%'))/100 for info in detection_info for det in info['detections']]
hist, bins = np.histogram(confidences, bins=5)
confidence_report = "\n".join([
f"置信度 {bins[i]:.2f}-{bins[i+1]:.2f}: {hist[i]:3d}个检测 ({hist[i]/len(confidences)*100:.1f}%)"
for i in range(len(hist))
])
report = f"""视频分析报告:
参数设置:
- 置信度阈值: {conf_threshold:.2f}
- 最大检测数量: {max_det}
- 处理时长: {process_seconds}秒
分析结果:
- 处理帧数: {frame_count}
- 平均每帧检测到的老鼠数: {np.mean([info['count'] for info in detection_info]):.1f}
- 最大检测数: {max([info['count'] for info in detection_info])}
- 最小检测数: {min([info['count'] for info in detection_info])}
置信度分布:
{confidence_report}
"""
def filter_trajectories(positions, width, height, max_jump_distance=100):
if len(positions) < 3:
return positions
filtered_positions = []
last_valid_pos = None
for i, pos in enumerate(positions):
x, y = pos
if not (0 <= x < width and 0 <= y < height):
continue
if last_valid_pos is None:
filtered_positions.append(pos)
last_valid_pos = pos
continue
distance = np.sqrt((x - last_valid_pos[0])**2 + (y - last_valid_pos[1])**2)
if distance > max_jump_distance:
if len(filtered_positions) > 0:
next_valid_pos = None
for next_pos in positions[i:]:
nx, ny = next_pos
if (0 <= nx < width and 0 <= ny < height):
next_distance = np.sqrt((nx - last_valid_pos[0])**2 + (ny - last_valid_pos[1])**2)
if next_distance <= max_jump_distance:
next_valid_pos = next_pos
break
if next_valid_pos is not None:
steps = max(2, int(distance / max_jump_distance))
for j in range(1, steps):
alpha = j / steps
interp_x = int(last_valid_pos[0] * (1 - alpha) + next_valid_pos[0] * alpha)
interp_y = int(last_valid_pos[1] * (1 - alpha) + next_valid_pos[1] * alpha)
filtered_positions.append([interp_x, interp_y])
filtered_positions.append(next_valid_pos)
last_valid_pos = next_valid_pos
else:
filtered_positions.append(pos)
last_valid_pos = pos
window_size = 5
smoothed_positions = []
if len(filtered_positions) >= window_size:
smoothed_positions.extend(filtered_positions[:window_size//2])
for i in range(window_size//2, len(filtered_positions) - window_size//2):
window = filtered_positions[i-window_size//2:i+window_size//2+1]
smoothed_x = int(np.mean([p[0] for p in window]))
smoothed_y = int(np.mean([p[1] for p in window]))
smoothed_positions.append([smoothed_x, smoothed_y])
smoothed_positions.extend(filtered_positions[-window_size//2:])
else:
smoothed_positions = filtered_positions
return smoothed_positions
print("生成轨迹图...")
trajectory_img = np.zeros((height, width, 3), dtype=np.uint8) + 255
points = np.array(all_positions, dtype=np.int32)
if len(points) > 1:
filtered_points = filter_trajectories(points.tolist(), width, height)
points = np.array(filtered_points, dtype=np.int32)
for i in range(len(points) - 1):
ratio = i / (len(points) - 1)
color = (
int((1 - ratio) * 255),
50,
int(ratio * 255)
)
cv2.line(trajectory_img, tuple(points[i]), tuple(points[i + 1]), color, 2)
cv2.circle(trajectory_img, tuple(points[0]), 8, (0, 255, 0), -1)
cv2.circle(trajectory_img, tuple(points[-1]), 8, (0, 0, 255), -1)
arrow_interval = max(len(points) // 20, 1)
for i in range(0, len(points) - arrow_interval, arrow_interval):
pt1 = tuple(points[i])
pt2 = tuple(points[i + arrow_interval])
angle = np.arctan2(pt2[1] - pt1[1], pt2[0] - pt1[0])
cv2.arrowedLine(trajectory_img, pt1, pt2, (100, 100, 100), 1, tipLength=0.2)
print("生成热力图...")
if np.max(heatmap) > 0:
heatmap_normalized = cv2.normalize(heatmap, None, 0, 255, cv2.NORM_MINMAX)
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), cv2.COLORMAP_JET)
alpha = 0.7
heatmap_colored = cv2.addWeighted(heatmap_colored, alpha, np.full_like(heatmap_colored, 255), 1-alpha, 0)
print("保存结果图像...")
trajectory_path = output_path.replace('.mp4', '_trajectory.png')
heatmap_path = output_path.replace('.mp4', '_heatmap.png')
cv2.imwrite(trajectory_path, trajectory_img)
cv2.imwrite(heatmap_path, heatmap_colored)
print("处理完成!")
return output_path, trajectory_path, heatmap_path, report
# 创建 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown("# 🐭 小鼠行为分析 (Mice Behavior Analysis)")
with gr.Group() as login_interface:
username = gr.Textbox(label="用户名")
password = gr.Textbox(label="密码", type="password")
login_button = gr.Button("登录")
login_msg = gr.Textbox(label="消息", interactive=False)
with gr.Group(visible=False) as main_interface:
gr.Markdown("上传视频来检测和分析小鼠行为 | Upload a video to detect and analyze mice behavior")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="输入视频")
process_seconds = gr.Number(
label="处理时长(秒,0表示处理整个视频)",
value=20
)
conf_threshold = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.05,
label="置信度阈值",
info="越高越严格,建议范围0.2-0.5"
)
max_det = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
label="最大检测数量",
info="每帧最多检测的目标数量"
)
process_btn = gr.Button("开始处理")
with gr.Column():
video_output = gr.Video(label="检测结果")
with gr.Row():
trajectory_output = gr.Image(label="运动轨迹")
heatmap_output = gr.Image(label="热力图")
report_output = gr.Textbox(label="分析报告")
gr.Markdown("""
### 使用说明
1. 上传视频文件
2. 设置处理参数:
- 处理时长:需要分析的视频时长(秒)
- 置信度阈值:检测的置信度要求(越高越严格)
- 最大检测数量:每帧最多检测的目标数量
3. 等待处理完成
4. 查看检测结果视频和分析报告
### 注意事项
- 支持常见视频格式(mp4, avi 等)
- 建议视频分辨率不超过 1920x1080
- 处理时间与视频长度和分辨率相关
- 置信度建议范围:0.2-0.5
- 最大检测数量建议根据实际场景设置
""")
login_button.click(
fn=login,
inputs=[username, password],
outputs=[login_interface, main_interface, login_msg]
)
process_btn.click(
fn=process_video,
inputs=[video_input, process_seconds, conf_threshold, max_det],
outputs=[video_output, trajectory_output, heatmap_output, report_output]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |