mice-pose-gpu / app.py
Hakureirm's picture
Update app.py
3217754 verified
raw
history blame
20.8 kB
import os
import gradio as gr
from ultralytics import YOLO
from fastapi import FastAPI
from PIL import Image
import torch
import spaces
import numpy as np
import cv2
from pathlib import Path
import tempfile
import imageio
from tqdm import tqdm
import logging
import torch.nn.functional as F
# 新增: 配置logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger(__name__)
# 从环境变量获取密码
APP_USERNAME = "admin" # 用户名保持固定
APP_PASSWORD = os.getenv("APP_PASSWORD", "default_password") # 从环境变量获取密码
app = FastAPI()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = YOLO('kunin-mice-pose.v0.1.5n.pt')
# 定义认证状态
class AuthState:
def __init__(self):
self.is_logged_in = False
auth_state = AuthState()
def login(username, password):
"""登录验证"""
logger.info(f"用户尝试登录: {username}")
if username == APP_USERNAME and password == APP_PASSWORD:
auth_state.is_logged_in = True
logger.info("登录成功")
return gr.update(visible=False), gr.update(visible=True), "登录成功"
logger.warning("登录失败:用户名或密码错误")
return gr.update(visible=True), gr.update(visible=False), "用户名或密码错误"
@spaces.GPU(duration=300)
def process_video(video_path, process_seconds=20, conf_threshold=0.2, max_det=8):
"""
处理视频并进行��鼠检测
Args:
video_path: 输入视频路径
process_seconds: 处理时长(秒)
conf_threshold: 置信度阈值(0-1)
max_det: 每帧最大检测数量
"""
logger.info(f"开始处理视频: {video_path}")
logger.info(f"参数设置 - 处理时长: {process_seconds}秒, 置信度阈值: {conf_threshold}, 最大检测数: {max_det}")
if not auth_state.is_logged_in:
logger.warning("用户未登录,拒绝访问")
return None, "请先登录"
# 创建临时目录保存输出视频
logger.info("创建临时输出目录")
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
output_path = tmp_file.name
# 获取视频信息
logger.info("读取视频信息")
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(process_seconds * fps) if process_seconds else int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
logger.info(f"视频信息 - FPS: {fps}, 分辨率: {width}x{height}, 总帧数: {total_frames}")
# 创建视频写入器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(
output_path,
fourcc,
fps,
(width, height)
)
# 计算基于分辨率的线宽
base_size = min(width, height)
line_thickness = max(1, int(base_size * 0.002)) # 0.2% 的最小边长
logger.info("开始YOLO模型推理")
results = model.predict(
source=video_path,
device=device,
conf=conf_threshold,
save=False,
show=False,
stream=True,
line_width=line_thickness,
boxes=True,
show_labels=True,
show_conf=True,
vid_stride=1,
max_det=max_det,
retina_masks=True,
verbose=False # 关闭YOLO默认日志输出
)
logger.info("开始处理检测结果")
frame_count = 0
detection_info = []
all_positions = []
heatmap = np.zeros((height, width), dtype=np.float32)
# 新增: 创建进度条
pbar = tqdm(total=total_frames, desc="处理视频", unit="帧")
for r in results:
frame = r.plot()
# 收集位置信息
if hasattr(r, 'keypoints') and r.keypoints is not None:
kpts = r.keypoints.data
if isinstance(kpts, torch.Tensor):
kpts = kpts.cpu().numpy()
if kpts.shape == (1, 8, 3): # [num_objects, num_keypoints, xyz]
x, y = int(kpts[0, 0, 0]), int(kpts[0, 0, 1])
all_positions.append([x, y])
if 0 <= x < width and 0 <= y < height:
sigma = 10
kernel_size = 31
temp_heatmap = np.zeros((height, width), dtype=np.float32)
temp_heatmap[y, x] = 1
temp_heatmap = cv2.GaussianBlur(temp_heatmap, (kernel_size, kernel_size), sigma)
heatmap += temp_heatmap
# 收集检测信息
frame_info = {
"frame": frame_count + 1,
"count": len(r.boxes),
"detections": []
}
for box in r.boxes:
conf = float(box.conf[0])
cls = int(box.cls[0])
cls_name = r.names[cls]
frame_info["detections"].append({
"class": cls_name,
"confidence": f"{conf:.2%}"
})
detection_info.append(frame_info)
video_writer.write(frame)
frame_count += 1
pbar.update(1) # 更新进度条
if process_seconds and frame_count >= total_frames:
break
pbar.close() # 关闭进度条
video_writer.release()
logger.info(f"视频处理完成,共处理 {frame_count} 帧")
# 生成分析报告
confidences = [float(det['confidence'].strip('%'))/100 for info in detection_info for det in info['detections']]
hist, bins = np.histogram(confidences, bins=5)
confidence_report = "\n".join([
f"置信度 {bins[i]:.2f}-{bins[i+1]:.2f}: {hist[i]:3d}个检测 ({hist[i]/len(confidences)*100:.1f}%)"
for i in range(len(hist))
])
report = f"""视频分析报告:
参数设置:
- 置信度阈值: {conf_threshold:.2f}
- 最大检测数量: {max_det}
- 处理时长: {process_seconds}
分析结果:
- 处理帧数: {frame_count}
- 平均每帧检测到的老鼠数: {np.mean([info['count'] for info in detection_info]):.1f}
- 最大检测数: {max([info['count'] for info in detection_info])}
- 最小检测数: {min([info['count'] for info in detection_info])}
置信度分布:
{confidence_report}
"""
def filter_trajectories_gpu(positions, width, height, max_jump_distance=100):
"""GPU加速版本的轨迹过滤"""
if len(positions) < 3:
return positions
# 转换为GPU张量
points = torch.tensor(positions, device=device, dtype=torch.float32)
# 计算相邻点之间的距离
diffs = points[1:] - points[:-1]
distances = torch.norm(diffs, dim=1)
# 找出需要插值的位置
mask = distances > max_jump_distance
valid_indices = (~mask).nonzero().squeeze()
if len(valid_indices) < 2:
return positions
# 使用GPU进行插值
filtered_points = []
last_valid_idx = 0
for i in range(len(valid_indices)-1):
curr_idx = valid_indices[i].item()
next_idx = valid_indices[i+1].item()
filtered_points.append(points[curr_idx].tolist())
if next_idx - curr_idx > 1:
# 线性插值
steps = max(2, int((next_idx - curr_idx)))
interp_points = torch.linspace(0, 1, steps)
start_point = points[curr_idx]
end_point = points[next_idx]
interpolated = start_point[None] * (1 - interp_points[:, None]) + \
end_point[None] * interp_points[:, None]
filtered_points.extend(interpolated[1:-1].tolist())
filtered_points.append(points[valid_indices[-1]].tolist())
# 平滑处理
if len(filtered_points) >= 5:
points_tensor = torch.tensor(filtered_points, device=device)
kernel_size = 5
padding = kernel_size // 2
# 使用1D卷积进行平滑
weights = torch.ones(1, 1, kernel_size, device=device) / kernel_size
smoothed_x = F.conv1d(
points_tensor[:, 0].view(1, 1, -1),
weights,
padding=padding
).squeeze()
smoothed_y = F.conv1d(
points_tensor[:, 1].view(1, 1, -1),
weights,
padding=padding
).squeeze()
smoothed_points = torch.stack([smoothed_x, smoothed_y], dim=1)
return smoothed_points.cpu().numpy().tolist()
return filtered_points
# 修改轨迹图生成部分
trajectory_img = torch.ones((height, width, 3), device=device, dtype=torch.float32)
points = np.array(all_positions, dtype=np.int32)
if len(points) > 1:
filtered_points = filter_trajectories_gpu(points.tolist(), width, height)
points = np.array(filtered_points, dtype=np.int32)
for i in range(len(points) - 1):
ratio = i / (len(points) - 1)
color = torch.tensor([
int((1 - ratio) * 255), # B
50, # G
int(ratio * 255) # R
], device=device, dtype=torch.float32)
# 使用GPU绘制线段
pt1, pt2 = points[i], points[i + 1]
draw_line_gpu(trajectory_img, pt1, pt2, color, 2)
trajectory_img = trajectory_img.cpu().numpy().astype(np.uint8)
# 修改热力图生成部分
if torch.cuda.is_available():
logger.info("使用GPU生成热力图")
try:
heatmap = torch.zeros((height, width), device=device)
for pos in filtered_points:
# 确保坐标是整数并且在有效范围内
x, y = map(int, pos) # 明确转换为整数
if 0 <= x < width and 0 <= y < height:
temp_heatmap = torch.zeros((height, width), device=device)
temp_heatmap[int(y), int(x)] = 1 # 再次确保是整数
# 使用GPU的高斯模糊
temp_heatmap = gaussian_blur_gpu(temp_heatmap, kernel_size=31, sigma=10)
heatmap += temp_heatmap
heatmap = heatmap.cpu().numpy()
except Exception as e:
logger.error(f"GPU热力图生成失败: {str(e)}")
# 回退到CPU处理
logger.info("切换到CPU生成热力图")
heatmap = np.zeros((height, width), dtype=np.float32)
for pos in filtered_points:
x, y = map(int, pos)
if 0 <= x < width and 0 <= y < height:
temp_heatmap = np.zeros((height, width), dtype=np.float32)
temp_heatmap[int(y), int(x)] = 1
temp_heatmap = cv2.GaussianBlur(temp_heatmap, (31, 31), 10)
heatmap += temp_heatmap
else:
logger.info("使用CPU生成热力图")
heatmap = np.zeros((height, width), dtype=np.float32)
for pos in filtered_points:
x, y = map(int, pos)
if 0 <= x < width and 0 <= y < height:
temp_heatmap = np.zeros((height, width), dtype=np.float32)
temp_heatmap[int(y), int(x)] = 1
temp_heatmap = cv2.GaussianBlur(temp_heatmap, (31, 31), 10)
heatmap += temp_heatmap
trajectory_frames = []
heatmap_frames = []
base_trajectory = np.zeros((height, width, 3), dtype=np.uint8) + 255
base_heatmap = np.zeros((height, width), dtype=np.float32)
frame_interval = max(1, len(filtered_points) // 30)
for i in range(0, len(filtered_points), frame_interval):
current_points = filtered_points[:i+1]
frame_trajectory = base_trajectory.copy()
if len(current_points) > 1:
points = np.array(current_points, dtype=np.int32)
for j in range(len(points) - 1):
ratio = j / (len(current_points) - 1)
color = (
int((1 - ratio) * 255),
50,
int(ratio * 255)
)
cv2.line(frame_trajectory, tuple(points[j]), tuple(points[j + 1]), color, 2)
cv2.circle(frame_trajectory, tuple(points[-1]), 8, (0, 0, 255), -1)
trajectory_frames.append(frame_trajectory)
frame_heatmap = base_heatmap.copy()
for x, y in current_points:
if 0 <= x < width and 0 <= y < height:
temp_heatmap = np.zeros((height, width), dtype=np.float32)
temp_heatmap[y, x] = 1
temp_heatmap = cv2.GaussianBlur(temp_heatmap, (31, 31), 10)
frame_heatmap += temp_heatmap
if np.max(frame_heatmap) > 0:
frame_heatmap_norm = cv2.normalize(frame_heatmap, None, 0, 255, cv2.NORM_MINMAX)
frame_heatmap_color = cv2.applyColorMap(frame_heatmap_norm.astype(np.uint8), cv2.COLORMAP_JET)
frame_heatmap_color = cv2.addWeighted(frame_heatmap_color, 0.7, np.full_like(frame_heatmap_color, 255), 0.3, 0)
heatmap_frames.append(frame_heatmap_color)
logger.info("开始生成轨迹图和热力图")
trajectory_gif_path = output_path.replace('.mp4', '_trajectory.gif')
heatmap_gif_path = output_path.replace('.mp4', '_heatmap.gif')
imageio.mimsave(trajectory_gif_path, trajectory_frames, duration=50)
imageio.mimsave(heatmap_gif_path, heatmap_frames, duration=50)
trajectory_path = output_path.replace('.mp4', '_trajectory.png')
heatmap_path = output_path.replace('.mp4', '_heatmap.png')
cv2.imwrite(trajectory_path, trajectory_img)
if np.max(heatmap) > 0:
heatmap_normalized = cv2.normalize(heatmap, None, 0, 255, cv2.NORM_MINMAX)
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), cv2.COLORMAP_JET)
heatmap_colored = cv2.addWeighted(heatmap_colored, 0.7, np.full_like(heatmap_colored, 255), 0.3, 0)
cv2.imwrite(heatmap_path, heatmap_colored)
logger.info("轨迹图和热力图生成完成")
logger.info("开始生成GIF动画")
imageio.mimsave(trajectory_gif_path, trajectory_frames, duration=50)
imageio.mimsave(heatmap_gif_path, heatmap_frames, duration=50)
logger.info("GIF动画生成完成")
logger.info("所有处理完成,准备返回结果")
return output_path, trajectory_path, heatmap_path, trajectory_gif_path, heatmap_gif_path, report
def gaussian_blur_gpu(tensor, kernel_size=31, sigma=10):
"""GPU版本的高斯模糊"""
channels = 1
kernel = get_gaussian_kernel2d(kernel_size, sigma).to(device)
kernel = kernel.view(1, 1, kernel_size, kernel_size)
tensor = tensor.view(1, 1, tensor.shape[0], tensor.shape[1])
return F.conv2d(tensor, kernel, padding=kernel_size//2).squeeze()
def get_gaussian_kernel2d(kernel_size, sigma):
"""生成2D高斯核"""
kernel_x = torch.linspace(-kernel_size//2, kernel_size//2, kernel_size)
x, y = torch.meshgrid(kernel_x, kernel_x, indexing='ij')
kernel = torch.exp(-(x.pow(2) + y.pow(2)) / (2 * sigma ** 2))
return kernel / kernel.sum()
def draw_line_gpu(image, pt1, pt2, color, thickness=1):
"""GPU版本的线段绘制"""
x1, y1 = map(int, pt1) # 确保是整数
x2, y2 = map(int, pt2) # 确保是整数
dx = abs(x2 - x1)
dy = abs(y2 - y1)
# 防止除零错误
steps = max(dx, dy)
if steps == 0:
# 如果是同一个点,直接画点
if 0 <= x1 < image.shape[1] and 0 <= y1 < image.shape[0]:
image[y1, x1] = color
return
x_inc = (x2 - x1) / steps
y_inc = (y2 - y1) / steps
x = x1
y = y1
points = torch.zeros((int(steps) + 1, 2), device=device)
for i in range(int(steps) + 1):
points[i] = torch.tensor([x, y])
x += x_inc
y += y_inc
points = points.long() # 转换为整数类型
valid_points = (points[:, 0] >= 0) & (points[:, 0] < image.shape[1]) & \
(points[:, 1] >= 0) & (points[:, 1] < image.shape[0])
points = points[valid_points]
color = color.to(image.dtype)
if thickness > 1:
for dx in range(-thickness//2, thickness//2 + 1):
for dy in range(-thickness//2, thickness//2 + 1):
offset_points = points + torch.tensor([dx, dy], device=device, dtype=torch.long)
valid_offset = (offset_points[:, 0] >= 0) & (offset_points[:, 0] < image.shape[1]) & \
(offset_points[:, 1] >= 0) & (offset_points[:, 1] < image.shape[0])
offset_points = offset_points[valid_offset]
image[offset_points[:, 1], offset_points[:, 0]] = color
else:
image[points[:, 1], points[:, 0]] = color
# 创建 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown("# 🐁 小鼠行为分析 (Mice Behavior Analysis)")
with gr.Group() as login_interface:
username = gr.Textbox(label="用户名")
password = gr.Textbox(label="密码", type="password")
login_button = gr.Button("登录")
login_msg = gr.Textbox(label="消息", interactive=False)
with gr.Group(visible=False) as main_interface:
gr.Markdown("上传视频来检测和分析小鼠行为 | Upload a video to detect and analyze mice behavior")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="输入视频")
process_seconds = gr.Number(
label="处理时长(秒,0表示处理整个视频)",
value=20
)
conf_threshold = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.05,
label="置信度阈值",
info="越高越严格,建议范围0.2-0.5"
)
max_det = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
label="最大检测数量",
info="每帧最多检测的目标数量"
)
process_btn = gr.Button("开始处理")
with gr.Column():
video_output = gr.Video(label="检测结果")
with gr.Row():
trajectory_output = gr.Image(label="运动轨迹")
trajectory_gif_output = gr.Image(label="轨迹动画")
with gr.Row():
heatmap_output = gr.Image(label="热力图")
heatmap_gif_output = gr.Image(label="热力图动画")
report_output = gr.Textbox(label="分析报告")
gr.Markdown("""
### 使用说明
1. 上传视频文件
2. 设置处理参数:
- 处理时间:需要分析的视频时长(秒)
- 置信度阈值:检测的置信度要求(越高越严格)
- 最大检测数量:每帧最多检测的目标数量
3. 等待处理完成
4. 查看检测结果视频和分析报告
### 注意事项
- 支持常见视频格式(mp4, avi 等)
- 建议视频分辨率不超过 1920x1080
- 处理时间与视频长度和分辨率相关
- 置信度建议范围:0.2-0.5
- 最大检测数量建议根据实际场景设置
""")
login_button.click(
fn=login,
inputs=[username, password],
outputs=[login_interface, main_interface, login_msg]
)
process_btn.click(
fn=process_video,
inputs=[video_input, process_seconds, conf_threshold, max_det],
outputs=[video_output, trajectory_output, heatmap_output,
trajectory_gif_output, heatmap_gif_output, report_output]
)
if __name__ == "__main__":
try:
# GPU相关操作
if torch.cuda.is_available():
logger.info("使用GPU进行轨迹和热力图计算")
# ... GPU操作 ...
else:
logger.info("使用CPU进行轨迹和热力图计算")
# ... CPU操作 ...
except Exception as e:
logger.error(f"处理轨迹和热力图时出错: {str(e)}")
raise
demo.launch(server_name="0.0.0.0", server_port=7860)