File size: 5,504 Bytes
1061089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import streamlit as st
from huggingface_hub import hf_hub_download
import torch
from PIL import Image
from torchvision import transforms
from skimage.color import rgb2lab, lab2rgb
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO

# Download the model from Hugging Face Hub
repo_id = "Hammad712/GAN-Colorization-Model"
model_filename = "generator.pt"
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)

# Define the generator model (same architecture as used during training)
from fastai.vision.learner import create_body
from torchvision.models import resnet34
from fastai.vision.models.unet import DynamicUnet

def build_generator(n_input=1, n_output=2, size=256):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    backbone = create_body(resnet34(), pretrained=True, n_in=n_input, cut=-2)
    G_net = DynamicUnet(backbone, n_output, (size, size)).to(device)
    return G_net

# Initialize and load the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
G_net = build_generator(n_input=1, n_output=2, size=256)
G_net.load_state_dict(torch.load(model_path, map_location=device))
G_net.eval()

# Preprocessing function
def preprocess_image(img_path):
    img = Image.open(img_path).convert("RGB")
    img = transforms.Resize((256, 256), Image.BICUBIC)(img)
    img = np.array(img)
    img_to_lab = rgb2lab(img).astype("float32")
    img_to_lab = transforms.ToTensor()(img_to_lab)
    L = img_to_lab[[0], ...] / 50. - 1.
    return L.unsqueeze(0).to(device)

# Inference function
def colorize_image(img_path, model):
    L = preprocess_image(img_path)
    with torch.no_grad():
        ab = model(L)
    L = (L + 1.) * 50.
    ab = ab * 110.
    Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
    rgb_imgs = []
    for img in Lab:
        img_rgb = lab2rgb(img)
        rgb_imgs.append(img_rgb)
    return np.stack(rgb_imgs, axis=0)

# Custom CSS
def set_css(style):
    st.markdown(f"<style>{style}</style>", unsafe_allow_html=True)

# Combined dark mode styles
combined_css = """
    .main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
    .block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); }
    .stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; }
    .stSpinner { color: #4CAF50; }
    .title {
        font-size: 3rem;
        font-weight: bold;
        display: flex;
        align-items: center;
        justify-content: center;
    }
    .colorful-text {
        background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
    }
    .black-white-text {
        color: black;
    }
    .small-input .stTextInput>div>input {
        height: 2rem;
        font-size: 0.9rem;
    }
    .small-file-uploader .stFileUploader>div>div {
        height: 2rem;
        font-size: 0.9rem;
    }
    .custom-text {
        font-size: 1.2rem;
        color: #feb47b;
        text-align: center;
        margin-top: -20px;
        margin-bottom: 20px;
    }
"""

# Streamlit application
st.set_page_config(layout="wide")

st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)

st.markdown('<div class="title"><span class="colorful-text">Image</span> <span class="black-white-text">Colorization</span></div>', unsafe_allow_html=True)
st.markdown('<div class="custom-text">Convert black and white images to color using AI</div>', unsafe_allow_html=True)

# Input for image URL or file upload
with st.expander("Input Options", expanded=True):
    uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png", "webp"], key="upload_file", help="Upload an image file to convert")

# Run inference button
if st.button("Colorize"):
    if uploaded_file is not None:
        with st.spinner('Processing...'):
            try:
                colorized_images = colorize_image(uploaded_file, G_net)
                colorized_image = colorized_images[0]

                # Display original and colorized images side by side
                st.markdown("### Result")
                col1, col2 = st.columns(2)

                with col1:
                    st.image(uploaded_file, caption='Original Image', use_column_width=True)
                with col2:
                    st.image(colorized_image, caption='Colorized Image', use_column_width=True)

                # Provide a download button for the colorized image
                img_byte_arr = BytesIO()
                Image.fromarray((colorized_image * 255).astype(np.uint8)).save(img_byte_arr, format='JPEG')
                img_byte_arr = img_byte_arr.getvalue()

                st.download_button(
                    label="Download Colorized Image",
                    data=img_byte_arr,
                    file_name="colorized_image.jpg",
                    mime="image/jpeg"
                )

                st.success("Image processed successfully!")

            except Exception as e:
                st.error(f"An error occurred: {e}")
                logging.error("Error during inference", exc_info=True)
    else:
        st.error("Please upload an image file.")