File size: 6,200 Bytes
521243d
46a11a0
 
 
94ba3d3
521243d
 
0356e8f
 
1dbeaf5
d8e677e
 
 
521243d
1d61cef
521243d
 
 
 
1d61cef
521243d
 
 
 
 
 
 
 
 
 
1d61cef
 
521243d
1d61cef
 
46a11a0
 
 
521243d
 
46a11a0
1d61cef
 
521243d
 
 
 
 
 
 
 
 
 
 
 
1d61cef
 
521243d
 
 
 
1d61cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521243d
 
 
 
1d61cef
 
521243d
 
 
 
 
 
 
1d61cef
 
 
 
0356e8f
 
 
1d61cef
0356e8f
521243d
 
 
 
 
 
0356e8f
 
 
 
 
 
 
 
 
1d61cef
521243d
 
1d61cef
521243d
 
 
 
 
 
46a11a0
521243d
 
 
 
 
 
 
 
 
 
 
 
 
 
94ba3d3
521243d
94ba3d3
521243d
 
 
 
1d61cef
521243d
94ba3d3
 
521243d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import torch
import librosa
import numpy as np
import tempfile
from fastapi import FastAPI, UploadFile, File, HTTPException
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from librosa.sequence import dtw
from contextlib import asynccontextmanager

os.environ["NUMBA_CACHE_DIR"] = "/tmp"  # Ensure Numba caching works in container environments


# --- Core Class Definition ---
class QuranRecitationComparer:
    def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", auth_token=None):
        """
        Initialize the Quran recitation comparer with a specific Wav2Vec2 model.
        """
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        if auth_token:
            self.processor = Wav2Vec2Processor.from_pretrained(model_name, token=auth_token)
            self.model = Wav2Vec2ForCTC.from_pretrained(model_name, token=auth_token)
        else:
            self.processor = Wav2Vec2Processor.from_pretrained(model_name)
            self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
        
        self.model = self.model.to(self.device)
        self.model.eval()
        self.embedding_cache = {}

    def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"Audio file not found: {file_path}")
        y, sr = librosa.load(file_path, sr=target_sr)
        if normalize:
            y = librosa.util.normalize(y)
        if trim_silence:
            y, _ = librosa.effects.trim(y, top_db=30)
        return y

    def get_deep_embedding(self, audio, sr=16000):
        input_values = self.processor(
            audio,
            sampling_rate=sr,
            return_tensors="pt"
        ).input_values.to(self.device)

        with torch.no_grad():
            outputs = self.model(input_values, output_hidden_states=True)

        hidden_states = outputs.hidden_states[-1]
        embedding_seq = hidden_states.squeeze(0).cpu().numpy()
        return embedding_seq

    def compute_dtw_distance(self, features1, features2):
        D, wp = dtw(X=features1, Y=features2, metric='euclidean')
        distance = D[-1, -1]
        normalized_distance = distance / len(wp)
        return normalized_distance

    def interpret_similarity(self, norm_distance):
        if norm_distance == 0:
            result = "The recitations are identical based on the deep embeddings."
            score = 100
        elif norm_distance < 1:
            result = "The recitations are extremely similar."
            score = 95
        elif norm_distance < 5:
            result = "The recitations are very similar with minor differences."
            score = 80
        elif norm_distance < 10:
            result = "The recitations show moderate similarity."
            score = 60
        elif norm_distance < 20:
            result = "The recitations show some noticeable differences."
            score = 40
        else:
            result = "The recitations are quite different."
            score = max(0, 100 - norm_distance)
        return result, score

    def get_embedding_for_file(self, file_path):
        if file_path in self.embedding_cache:
            return self.embedding_cache[file_path]
        audio = self.load_audio(file_path)
        embedding = self.get_deep_embedding(audio)
        self.embedding_cache[file_path] = embedding
        return embedding

    def predict(self, file_path1, file_path2):
        embedding1 = self.get_embedding_for_file(file_path1)
        embedding2 = self.get_embedding_for_file(file_path2)
        norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
        interpretation, similarity_score = self.interpret_similarity(norm_distance)
        print(f"Similarity Score: {similarity_score:.1f}/100")
        print(f"Interpretation: {interpretation}")
        return similarity_score, interpretation

    def clear_cache(self):
        self.embedding_cache = {}

# --- Lifespan Event Handler ---
@asynccontextmanager
async def lifespan(app: FastAPI):
    global comparer
    # Use environment variables or a secure configuration in production
    auth_token = os.environ.get("HF_TOKEN")
    comparer = QuranRecitationComparer(
        model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
        auth_token=auth_token
    )
    print("Model initialized and ready for predictions!")
    yield
    print("Application shutdown: Cleanup if necessary.")

app = FastAPI(
    title="Quran Recitation Comparer API",
    description="Compares two Quran recitations using a deep wav2vec2 model.",
    version="1.0",
    lifespan=lifespan
)

# --- API Endpoints ---
@app.get("/", summary="Health Check")
async def root():
    return {"message": "Quran Recitation Comparer API is up and running."}

@app.post("/predict", summary="Compare Two Audio Files", response_model=dict)
async def predict(file1: UploadFile = File(...), file2: UploadFile = File(...)):
    tmp1_path = None
    tmp2_path = None
    try:
        suffix1 = os.path.splitext(file1.filename)[1] or ".wav"
        with tempfile.NamedTemporaryFile(delete=False, suffix=suffix1) as tmp1:
            content1 = await file1.read()
            tmp1.write(content1)
            tmp1_path = tmp1.name

        suffix2 = os.path.splitext(file2.filename)[1] or ".wav"
        with tempfile.NamedTemporaryFile(delete=False, suffix=suffix2) as tmp2:
            content2 = await file2.read()
            tmp2.write(content2)
            tmp2_path = tmp2.name

        similarity_score, interpretation = comparer.predict(tmp1_path, tmp2_path)
        return {"similarity_score": similarity_score, "interpretation": interpretation}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))
    finally:
        if tmp1_path and os.path.exists(tmp1_path):
            os.remove(tmp1_path)
        if tmp2_path and os.path.exists(tmp2_path):
            os.remove(tmp2_path)

@app.post("/clear_cache", summary="Clear Embedding Cache", response_model=dict)
async def clear_cache():
    comparer.clear_cache()
    return {"message": "Cache cleared."}