Spaces:
Runtime error
Runtime error
File size: 9,039 Bytes
521243d 60a573f 8bb5ed1 60a573f 612c535 60a573f 8bb5ed1 d7fd2ab 8bb5ed1 1dbeaf5 612c535 60a573f 612c535 60a573f 612c535 60a573f 612c535 60a573f 612c535 60a573f 8bb5ed1 1d61cef 8bb5ed1 60a573f 8bb5ed1 60a573f 8bb5ed1 521243d 8bb5ed1 1d61cef 60a573f 8bb5ed1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
import tempfile
from fastapi import FastAPI, UploadFile, File
import uvicorn
import torch
import librosa
from audioread.exceptions import NoBackendError
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from librosa.sequence import dtw
from google import genai
from google.genai import types
app = FastAPI()
# Global variables to hold our loaded models/clients.
client = None
comparer = None
# ---------------------------
# DTW-based Comparison Class
# ---------------------------
class QuranRecitationComparer:
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", auth_token=None):
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and processor once during initialization.
if auth_token:
self.processor = Wav2Vec2Processor.from_pretrained(model_name, token=auth_token)
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, token=auth_token)
else:
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
self.model = self.model.to(self.device)
self.model.eval()
# Cache for embeddings to avoid recomputation.
self.embedding_cache = {}
def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
"""Load and preprocess an audio file."""
if not os.path.exists(file_path):
raise FileNotFoundError(f"Audio file not found: {file_path}")
try:
y, sr = librosa.load(file_path, sr=target_sr)
except NoBackendError as e:
raise RuntimeError(
"Failed to load audio using librosa. Please ensure you have a valid audio backend installed (e.g., ffmpeg)."
) from e
if normalize:
y = librosa.util.normalize(y)
if trim_silence:
y, _ = librosa.effects.trim(y, top_db=30)
return y
def get_deep_embedding(self, audio, sr=16000):
"""Extract frame-wise deep embeddings using the pretrained model."""
input_values = self.processor(
audio,
sampling_rate=sr,
return_tensors="pt"
).input_values.to(self.device)
with torch.no_grad():
outputs = self.model(input_values, output_hidden_states=True)
hidden_states = outputs.hidden_states[-1]
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
return embedding_seq
def compute_dtw_distance(self, features1, features2):
"""Compute the DTW distance between two sequences of features."""
D, wp = dtw(X=features1, Y=features2, metric='euclidean')
distance = D[-1, -1]
normalized_distance = distance / len(wp)
return normalized_distance
def interpret_similarity(self, norm_distance):
"""Interpret the normalized distance value."""
if norm_distance == 0:
result = "The recitations are identical based on the deep embeddings."
score = 100
elif norm_distance < 1:
result = "The recitations are extremely similar."
score = 95
elif norm_distance < 5:
result = "The recitations are very similar with minor differences."
score = 80
elif norm_distance < 10:
result = "The recitations show moderate similarity."
score = 60
elif norm_distance < 20:
result = "The recitations show some noticeable differences."
score = 40
else:
result = "The recitations are quite different."
score = max(0, 100 - norm_distance)
return result, score
def get_embedding_for_file(self, file_path):
"""Get embedding for a file, using cache if available."""
if file_path in self.embedding_cache:
return self.embedding_cache[file_path]
audio = self.load_audio(file_path)
embedding = self.get_deep_embedding(audio)
self.embedding_cache[file_path] = embedding
return embedding
def predict(self, file_path1, file_path2):
"""
Predict the similarity between two audio files.
Returns:
float: Similarity score
str: Interpretation of similarity
"""
embedding1 = self.get_embedding_for_file(file_path1)
embedding2 = self.get_embedding_for_file(file_path2)
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
interpretation, similarity_score = self.interpret_similarity(norm_distance)
return similarity_score, interpretation
def clear_cache(self):
"""Clear the embedding cache to free memory."""
self.embedding_cache = {}
# ---------------------------
# Application Startup
# ---------------------------
@app.on_event("startup")
async def startup_event():
global client, comparer
# Load the GenAI API key from environment variable.
genai_api_key = os.getenv("GENAI_API_KEY")
if not genai_api_key:
raise EnvironmentError("GENAI_API_KEY environment variable not set")
client = genai.Client(api_key=genai_api_key)
# Retrieve HuggingFace auth token from environment variable (if needed).
hf_auth_token = os.getenv("HF_AUTH_TOKEN")
# Initialize the comparer instance once at startup.
comparer = QuranRecitationComparer(auth_token=hf_auth_token)
# ---------------------------
# API Endpoints
# ---------------------------
@app.get("/")
async def root():
return {
"message": "Welcome to the Audio Similarity API!",
"usage": {
"endpoints": {
"gemini": {
"path": "/compare-audio",
"description": "POST two audio files (user recitation and professional qarri) for similarity analysis using Gemini."
},
"dtw": {
"path": "/compare-dtw",
"description": "POST two audio files (user recitation and professional qarri) for similarity analysis using deep embeddings and DTW."
}
}
}
}
@app.post("/compare-audio")
async def compare_audio(
audio1: UploadFile = File(...),
audio2: UploadFile = File(...)
):
"""
Compare two audio files using the Gemini approach.
The first audio is the user's recitation and the second is the professional qarri recitation.
"""
# Read the uploaded audio files.
audio1_bytes = await audio1.read()
audio2_bytes = await audio2.read()
# Create a refined prompt that clearly identifies the audio sources.
prompt = (
"""Please analyze and compare the two provided audio clips.
The first audio is the user's recitation, and the second audio is the professional qarri recitation.
Evaluate their similarity on a scale from 0 to 1, where:
- 1 indicates the user's recitation contains no mistakes compared to the professional version,
- 0 indicates there are significant mistakes.
Provide your response with:
1. A numerical similarity score on the first line.
2. A single sentence that indicates whether the user's recitation is similar, moderately similar, or dissimilar to the professional qarri."""
)
# Generate the content using the Gemini model with the two audio inputs.
response = client.models.generate_content(
model='gemini-2.0-flash',
contents=[
prompt,
types.Part.from_bytes(
data=audio1_bytes,
mime_type=audio1.content_type,
),
types.Part.from_bytes(
data=audio2_bytes,
mime_type=audio2.content_type,
)
]
)
return {"result": response.text}
@app.post("/compare-dtw")
async def compare_dtw(
audio1: UploadFile = File(...),
audio2: UploadFile = File(...)
):
"""
Compare two audio files using deep embeddings and DTW.
The first audio is the user's recitation and the second is the professional qarri recitation.
"""
# Save the uploaded files to temporary files so they can be processed by the comparer.
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp1:
tmp1.write(await audio1.read())
tmp1_path = tmp1.name
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp2:
tmp2.write(await audio2.read())
tmp2_path = tmp2.name
try:
# Get similarity score and interpretation using DTW-based approach.
similarity_score, interpretation = comparer.predict(tmp1_path, tmp2_path)
finally:
# Clean up temporary files.
os.remove(tmp1_path)
os.remove(tmp2_path)
return {
"similarity_score": similarity_score,
"interpretation": interpretation
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|