Hammad712's picture
Create main.py
46a11a0 verified
raw
history blame
7.95 kB
import os
import torch
import librosa
import numpy as np
from typing import List, Dict, Any, Optional
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from librosa.sequence import dtw
import tempfile
import uuid
import shutil
# Initialize FastAPI app
app = FastAPI(
title="Quran Recitation Comparison API",
description="API for comparing similarity between Quran recitations using Wav2Vec2 embeddings",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allows all origins
allow_credentials=True,
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
# Global variables
MODEL = None
PROCESSOR = None
UPLOAD_DIR = os.path.join(tempfile.gettempdir(), "quran_comparison_uploads")
# Ensure upload directory exists
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Response models
class SimilarityResponse(BaseModel):
similarity_score: float
interpretation: str
class ErrorResponse(BaseModel):
error: str
# Initialize model from environment variable
def initialize_model():
global MODEL, PROCESSOR
# Get HF token from environment variable
hf_token = os.environ.get("HF_TOKEN", None)
model_name = os.environ.get("MODEL_NAME", "jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
try:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Loading model on device: {device}")
# Load model and processor
if hf_token:
PROCESSOR = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=hf_token)
MODEL = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=hf_token)
else:
PROCESSOR = Wav2Vec2Processor.from_pretrained(model_name)
MODEL = Wav2Vec2ForCTC.from_pretrained(model_name)
MODEL = MODEL.to(device)
MODEL.eval()
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
raise e
# Load audio file
def load_audio(file_path, target_sr=16000, trim_silence=True, normalize=True):
"""Load and preprocess an audio file."""
try:
y, sr = librosa.load(file_path, sr=target_sr)
if normalize:
y = librosa.util.normalize(y)
if trim_silence:
y, _ = librosa.effects.trim(y, top_db=30)
return y
except Exception as e:
raise HTTPException(status_code=400, detail=f"Error loading audio: {e}")
# Get deep embedding
def get_deep_embedding(audio, sr=16000):
"""Extract frame-wise deep embeddings using the pretrained model."""
global MODEL, PROCESSOR
if MODEL is None or PROCESSOR is None:
raise HTTPException(status_code=500, detail="Model not initialized")
try:
device = next(MODEL.parameters()).device
input_values = PROCESSOR(
audio,
sampling_rate=sr,
return_tensors="pt"
).input_values.to(device)
with torch.no_grad():
outputs = MODEL(input_values, output_hidden_states=True)
hidden_states = outputs.hidden_states[-1]
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
return embedding_seq
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error extracting embeddings: {e}")
# Compute DTW distance
def compute_dtw_distance(features1, features2):
"""Compute the DTW distance between two sequences of features."""
try:
D, wp = dtw(X=features1, Y=features2, metric='euclidean')
distance = D[-1, -1]
normalized_distance = distance / len(wp)
return normalized_distance
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error computing DTW distance: {e}")
# Interpret similarity
def interpret_similarity(norm_distance):
"""Interpret the normalized distance value."""
if norm_distance == 0:
result = "The recitations are identical based on the deep embeddings."
score = 100
elif norm_distance < 1:
result = "The recitations are extremely similar."
score = 95
elif norm_distance < 5:
result = "The recitations are very similar with minor differences."
score = 80
elif norm_distance < 10:
result = "The recitations show moderate similarity."
score = 60
elif norm_distance < 20:
result = "The recitations show some noticeable differences."
score = 40
else:
result = "The recitations are quite different."
score = max(0, 100 - norm_distance)
return result, score
# Clean up temporary files
def cleanup_temp_files(file_paths):
"""Remove temporary files."""
for file_path in file_paths:
if os.path.exists(file_path):
try:
os.remove(file_path)
except Exception as e:
print(f"Error removing temporary file {file_path}: {e}")
# API endpoints
@app.post("/compare", response_model=SimilarityResponse)
async def compare_recitations(
background_tasks: BackgroundTasks,
file1: UploadFile = File(...),
file2: UploadFile = File(...)
):
"""
Compare two Quran recitations and return similarity metrics.
- **file1**: First audio file
- **file2**: Second audio file
Returns:
- **similarity_score**: Score between 0-100 indicating similarity
- **interpretation**: Text interpretation of the similarity
"""
# Check if model is initialized
if MODEL is None or PROCESSOR is None:
raise HTTPException(status_code=500, detail="Model not initialized")
# Temporary file paths
temp_file1 = os.path.join(UPLOAD_DIR, f"{uuid.uuid4()}.wav")
temp_file2 = os.path.join(UPLOAD_DIR, f"{uuid.uuid4()}.wav")
try:
# Save uploaded files
with open(temp_file1, "wb") as f:
shutil.copyfileobj(file1.file, f)
with open(temp_file2, "wb") as f:
shutil.copyfileobj(file2.file, f)
# Load audio files
audio1 = load_audio(temp_file1)
audio2 = load_audio(temp_file2)
# Extract embeddings
embedding1 = get_deep_embedding(audio1)
embedding2 = get_deep_embedding(audio2)
# Compute DTW distance
norm_distance = compute_dtw_distance(embedding1.T, embedding2.T)
# Interpret results
interpretation, similarity_score = interpret_similarity(norm_distance)
# Add cleanup task
background_tasks.add_task(cleanup_temp_files, [temp_file1, temp_file2])
return {
"similarity_score": similarity_score,
"interpretation": interpretation
}
except Exception as e:
# Ensure files are cleaned up even in case of error
background_tasks.add_task(cleanup_temp_files, [temp_file1, temp_file2])
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
"""Health check endpoint."""
if MODEL is None or PROCESSOR is None:
return JSONResponse(
status_code=503,
content={"status": "error", "message": "Model not initialized"}
)
return {"status": "ok", "model_loaded": True}
# Initialize model on startup
@app.on_event("startup")
async def startup_event():
initialize_model()
# Run the FastAPI app
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860)) # Default to port 7860 for Hugging Face Spaces
uvicorn.run("main:app", host="0.0.0.0", port=port, reload=False)