File size: 5,539 Bytes
ea9f27f
 
 
 
 
 
 
 
 
 
 
 
 
532251c
ea9f27f
 
532251c
ea9f27f
 
 
 
 
 
 
f4ce0ac
 
 
ea9f27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532251c
 
ea9f27f
532251c
ea9f27f
 
 
 
 
 
 
 
 
 
 
532251c
 
ea9f27f
532251c
ea9f27f
 
 
 
 
 
63e518b
 
 
 
 
 
 
 
ea9f27f
63e518b
 
 
 
 
ea9f27f
63e518b
 
 
ea9f27f
63e518b
 
 
ea9f27f
63e518b
 
 
 
 
 
 
 
 
ea9f27f
63e518b
 
 
 
 
 
 
 
 
ea9f27f
63e518b
 
 
ea9f27f
63e518b
 
 
 
ea9f27f
63e518b
ea9f27f
 
 
 
 
 
 
532251c
ea9f27f
 
 
532251c
ea9f27f
 
 
 
 
 
 
 
 
 
 
 
532251c
ea9f27f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532251c
f4ce0ac
ea9f27f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#origin

from seg import U2NETP
from GeoTr import GeoTr
from IllTr import IllTr
from inference_ill import rec_ill

import torch
import torch.nn as nn
import torch.nn.functional as F
import skimage.io as io
import numpy as np
import cv2
import glob
import os
from PIL import Image
import argparse
import warnings
warnings.filterwarnings('ignore')





import gradio as gr


class GeoTr_Seg(nn.Module):
    def __init__(self):
        super(GeoTr_Seg, self).__init__()
        self.msk = U2NETP(3, 1)
        self.GeoTr = GeoTr(num_attn_layers=6)
        
    def forward(self, x):
        msk, _1,_2,_3,_4,_5,_6 = self.msk(x)
        msk = (msk > 0.5).float()
        x = msk * x

        bm = self.GeoTr(x)
        bm = (2 * (bm / 286.8) - 1) * 0.99
        
        return bm
        

def reload_model(model, path=""):
    if not bool(path):
        return model
    else:
        model_dict = model.state_dict()
        pretrained_dict = torch.load(path, map_location='cpu')
        #print(len(pretrained_dict.keys()))
        pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
        #print(len(pretrained_dict.keys()))
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)

        return model
        

def reload_segmodel(model, path=""):
    if not bool(path):
        return model
    else:
        model_dict = model.state_dict()
        pretrained_dict = torch.load(path, map_location='cpu')
        #print(len(pretrained_dict.keys()))
        pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
        #print(len(pretrained_dict.keys()))
        model_dict.update(pretrained_dict)
        model.load_state_dict(model_dict)

        return model
        

# def rec(opt):
#     # print(torch.__version__) # 1.5.1
#     img_list = os.listdir(opt.distorrted_path)  # distorted images list

#     if not os.path.exists(opt.gsave_path):  # create save path
#         os.mkdir(opt.gsave_path)
#     if not os.path.exists(opt.isave_path):  # create save path
#         os.mkdir(opt.isave_path)
    
#     GeoTr_Seg_model = GeoTr_Seg()#.cuda()
#     # reload segmentation model
#     reload_segmodel(GeoTr_Seg_model.msk, opt.Seg_path)
#     # reload geometric unwarping model
#     reload_model(GeoTr_Seg_model.GeoTr, opt.GeoTr_path)
    
#     IllTr_model = IllTr()#.cuda()
#     # reload illumination rectification model
#     reload_model(IllTr_model, opt.IllTr_path)
    
#     # To eval mode
#     GeoTr_Seg_model.eval()
#     IllTr_model.eval()
  
#     for img_path in img_list:
#         name = img_path.split('.')[-2]  # image name

#         img_path = opt.distorrted_path + img_path  # read image and to tensor
#         im_ori = np.array(Image.open(img_path))[:, :, :3] / 255. 
#         h, w, _ = im_ori.shape
#         im = cv2.resize(im_ori, (288, 288))
#         im = im.transpose(2, 0, 1)
#         im = torch.from_numpy(im).float().unsqueeze(0)
        
#         with torch.no_grad():
#             # geometric unwarping
#             bm = GeoTr_Seg_model(im)
#             bm = bm.cpu()
#             bm0 = cv2.resize(bm[0, 0].numpy(), (w, h))  # x flow
#             bm1 = cv2.resize(bm[0, 1].numpy(), (w, h))  # y flow
#             bm0 = cv2.blur(bm0, (3, 3))
#             bm1 = cv2.blur(bm1, (3, 3))
#             lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0)  # h * w * 2
            
#             out = F.grid_sample(torch.from_numpy(im_ori).permute(2,0,1).unsqueeze(0).float(), lbl, align_corners=True)
#             img_geo = ((out[0]*255).permute(1, 2, 0).numpy())[:,:,::-1].astype(np.uint8)
#             cv2.imwrite(opt.gsave_path + name + '_geo' + '.png', img_geo)  # save
            
#             # illumination rectification
#             if opt.ill_rec:
#                 ill_savep = opt.isave_path + name + '_ill' + '.png'
#                 rec_ill(IllTr_model, img_geo, saveRecPath=ill_savep)
        
#         print('Done: ', img_path)
        





def process_image(input_image):
    GeoTr_Seg_model = GeoTr_Seg()#.cuda()
    reload_segmodel(GeoTr_Seg_model.msk, './model_pretrained/seg.pth')
    reload_model(GeoTr_Seg_model.GeoTr, './model_pretrained/geotr.pth')

    IllTr_model = IllTr()#.cuda()
    reload_model(IllTr_model, './model_pretrained/illtr.pth')

    GeoTr_Seg_model.eval()
    IllTr_model.eval()

    im_ori = np.array(input_image)[:, :, :3] / 255.
    h, w, _ = im_ori.shape
    im = cv2.resize(im_ori, (288, 288))
    im = im.transpose(2, 0, 1)
    im = torch.from_numpy(im).float().unsqueeze(0)

    with torch.no_grad():
        bm = GeoTr_Seg_model(im)
        bm = bm.cpu()
        bm0 = cv2.resize(bm[0, 0].numpy(), (w, h))
        bm1 = cv2.resize(bm[0, 1].numpy(), (w, h))
        bm0 = cv2.blur(bm0, (3, 3))
        bm1 = cv2.blur(bm1, (3, 3))
        lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0)

        out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
        img_geo = ((out[0] * 255).permute(1, 2, 0).numpy()).astype(np.uint8)
        
        ill_rec=False

        if ill_rec:
            img_ill = rec_ill(IllTr_model, img_geo)
            return Image.fromarray(img_ill)
        else:
            return Image.fromarray(img_geo)

# Define Gradio interface
input_image = gr.inputs.Image()
output_image = gr.outputs.Image(type='pil')


iface = gr.Interface(fn=process_image, inputs=input_image, outputs=output_image, title="DocTr")
iface.launch()