Spaces:
Running
Running
File size: 3,383 Bytes
ea9f27f 532251c ea9f27f 532251c ea9f27f f4ce0ac eecbd6f f4ce0ac ea9f27f 532251c ea9f27f 532251c ea9f27f 532251c ea9f27f 532251c ea9f27f 532251c ea9f27f 532251c ea9f27f 532251c ea9f27f 74e9d98 ea9f27f eecbd6f f4ce0ac ea9f27f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
#origin
from seg import U2NETP
from GeoTr import GeoTr
from IllTr import IllTr
from inference_ill import rec_ill
import torch
import torch.nn as nn
import torch.nn.functional as F
import skimage.io as io
import numpy as np
import cv2
import glob
import os
from PIL import Image
import argparse
import warnings
warnings.filterwarnings('ignore')
import gradio as gr
example_img_list = ['51_1 copy.png','48_2 copy.png','25.jpg']
class GeoTr_Seg(nn.Module):
def __init__(self):
super(GeoTr_Seg, self).__init__()
self.msk = U2NETP(3, 1)
self.GeoTr = GeoTr(num_attn_layers=6)
def forward(self, x):
msk, _1,_2,_3,_4,_5,_6 = self.msk(x)
msk = (msk > 0.5).float()
x = msk * x
bm = self.GeoTr(x)
bm = (2 * (bm / 286.8) - 1) * 0.99
return bm
def reload_model(model, path=""):
if not bool(path):
return model
else:
model_dict = model.state_dict()
pretrained_dict = torch.load(path, map_location='cpu')
#print(len(pretrained_dict.keys()))
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
#print(len(pretrained_dict.keys()))
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def reload_segmodel(model, path=""):
if not bool(path):
return model
else:
model_dict = model.state_dict()
pretrained_dict = torch.load(path, map_location='cpu')
#print(len(pretrained_dict.keys()))
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
#print(len(pretrained_dict.keys()))
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def process_image(input_image):
GeoTr_Seg_model = GeoTr_Seg()#.cuda()
reload_segmodel(GeoTr_Seg_model.msk, './model_pretrained/seg.pth')
reload_model(GeoTr_Seg_model.GeoTr, './model_pretrained/geotr.pth')
IllTr_model = IllTr()#.cuda()
reload_model(IllTr_model, './model_pretrained/illtr.pth')
GeoTr_Seg_model.eval()
IllTr_model.eval()
im_ori = np.array(input_image)[:, :, :3] / 255.
h, w, _ = im_ori.shape
im = cv2.resize(im_ori, (288, 288))
im = im.transpose(2, 0, 1)
im = torch.from_numpy(im).float().unsqueeze(0)
with torch.no_grad():
bm = GeoTr_Seg_model(im)
bm = bm.cpu()
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h))
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h))
bm0 = cv2.blur(bm0, (3, 3))
bm1 = cv2.blur(bm1, (3, 3))
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0)
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
img_geo = ((out[0] * 255).permute(1, 2, 0).numpy()).astype(np.uint8)
ill_rec=False
if ill_rec:
img_ill = rec_ill(IllTr_model, img_geo)
return Image.fromarray(img_ill)
else:
return Image.fromarray(img_geo)
# Define Gradio interface
input_image = gr.inputs.Image()
output_image = gr.outputs.Image(type='pil')
iface = gr.Interface(fn=process_image, inputs=input_image, outputs=output_image, title="DocTr", examples=example_img_list)
iface.launch()
|