File size: 4,855 Bytes
3a295f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import cv2
from ultralytics import YOLO, solutions
import torch
import numpy as np
from collections import defaultdict
import gradio as gr

device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print("Device:", device)

# Load MiDaS model for depth estimation
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
midas.to(device)
midas.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms").small_transform

# Load YOLO model
model = YOLO('yolov8x.pt')
names = model.model.names
model.to(device)

pixels_per_meter = 300
unattended_threshold = 2.0  # meters

dist_obj = solutions.DistanceCalculation(names=names, view_img=False, pixels_per_meter=pixels_per_meter)

# Set model parameters
model.overrides['conf'] = 0.5  # NMS confidence threshold
model.overrides['iou'] = 0.5  # NMS IoU threshold
model.overrides['agnostic_nms'] = True  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# Store scores for each person-luggage pair using tracker ID
ownership_scores = defaultdict(lambda: defaultdict(int))

def calculate_distance(depth_map, point1, point2):
    dist_2d_m, dist_2d_mm = dist_obj.calculate_distance(point1, point2)
    z1 = depth_map[int(point1[1]), int(point1[0])] / pixels_per_meter
    z2 = depth_map[int(point2[1]), int(point2[0])] / pixels_per_meter
    depth_diff = np.abs(z1 - z2)
    distance = np.sqrt(dist_2d_m ** 2 + depth_diff ** 2)
    return distance

def process_video(video_source):
    cap = cv2.VideoCapture(video_source)
    if not cap.isOpened():
        print("Error: Could not open video.")
        return

    owners = {}  # Store assigned owners for luggage using tracker ID
    abandoned_luggages = set()  # Store abandoned luggage using tracker ID

    frame_count = 0
    output_frames = []  # Store the processed frames to return as video

    while cap.isOpened():
        ret, frame = cap.read()
        frame_count += 1
        if not ret:
            break
        if frame_count % 10 != 0:
            continue
        results = model.track(frame, persist=True, classes=[0, 28, 24, 26], show=False)
        frame_ = results[0].plot()

        # MiDaS depth estimation
        img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        input_batch = midas_transforms(img).to(device)
        with torch.no_grad():
            prediction = midas(input_batch)
            prediction = torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze()
            depth_map = prediction.cpu().numpy()

        persons = []
        luggages = []
        num_boxes = len(results[0].boxes)
        for i in range(num_boxes):
            box = results[0].boxes[i]
            centroid = get_centroid(box)
            track_id = box.id
            if box.cls == 0:
                persons.append((track_id, centroid))
            elif box.cls in [24, 28, 26]:
                luggages.append((track_id, centroid))

        for person_id, person_centroid in persons:
            for luggage_id, luggage_centroid in luggages:
                distance_m = calculate_distance(depth_map, person_centroid, luggage_centroid)
                if distance_m <= unattended_threshold and luggage_id not in abandoned_luggages:
                    ownership_scores[luggage_id][person_id] += 1

        for luggage_id, luggage_centroid in luggages:
            person_in_range = any(
                calculate_distance(depth_map, person_centroid, luggage_centroid) <= unattended_threshold
                for person_id, person_centroid in persons
            )

            if not person_in_range and luggage_id not in abandoned_luggages:
                abandoned_luggages.add(luggage_id)

        # Visualization
        for box in results[0].boxes:
            xyxy = box.xyxy[0].cpu().numpy().astype(int)
            cv2.rectangle(frame_, (xyxy[0], xyxy[1]), (xyxy[2], xyxy[3]), (0, 255, 0), 2)
            centroid = get_centroid(box)
            cv2.circle(frame_, (int(centroid[0]), int(centroid[1])), 5, (0, 255, 0), -1)

        output_frames.append(frame_)

    cap.release()
    cv2.destroyAllWindows()

    return output_frames

def get_centroid(box):
    return dist_obj.calculate_centroid(box.xyxy[0].cpu().numpy().astype(int))

def video_interface(video):
    processed_frames = process_video(video)
    return processed_frames[0] if processed_frames else None

# Create a Gradio interface
interface = gr.Interface(fn=video_interface, inputs="video", outputs="video", title="Abandoned Object Detection")

if __name__ == "__main__":
    interface.launch()