Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,6 +21,17 @@ for i, url in enumerate(file_urls):
|
|
21 |
else:
|
22 |
download_file(file_urls[i], f"image_{i}.jpg")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
model = YOLO('modelbest.pt')
|
25 |
path = [['image_0.jpg'], ['image_1.jpg']]
|
26 |
video_path = [['video.mp4']]
|
@@ -31,30 +42,27 @@ def show_preds_image(image_path):
|
|
31 |
results = outputs[0].cpu().numpy()
|
32 |
|
33 |
for i, det in enumerate(results.boxes.xyxy):
|
34 |
-
# Draw the bounding box
|
35 |
-
cv2.rectangle(
|
36 |
-
image,
|
37 |
-
(int(det[0]), int(det[1])),
|
38 |
-
(int(det[2]), int(det[3])),
|
39 |
-
color=(0, 0, 255),
|
40 |
-
thickness=2,
|
41 |
-
lineType=cv2.LINE_AA
|
42 |
-
)
|
43 |
-
|
44 |
-
# Get the class label and confidence score
|
45 |
class_id = int(results.boxes.cls[i])
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
#
|
50 |
-
label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
57 |
|
|
|
58 |
# def show_preds_image(image_path):
|
59 |
# image = cv2.imread(image_path)
|
60 |
# outputs = model.predict(source=image_path)
|
@@ -94,17 +102,29 @@ def show_preds_video(video_path):
|
|
94 |
frame_copy = frame.copy()
|
95 |
outputs = model.predict(source=frame)
|
96 |
results = outputs[0].cpu().numpy()
|
|
|
97 |
for i, det in enumerate(results.boxes.xyxy):
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
107 |
|
|
|
108 |
inputs_video = [
|
109 |
gr.Video(format="mp4", label="Input Video"),
|
110 |
]
|
|
|
21 |
else:
|
22 |
download_file(file_urls[i], f"image_{i}.jpg")
|
23 |
|
24 |
+
colors = {
|
25 |
+
0: (255, 0, 0), # Red for class 0
|
26 |
+
1: (0, 255, 0), # Green for class 1
|
27 |
+
2: (0, 0, 255), # Blue for class 2
|
28 |
+
3: (255, 255, 0), # Yellow for class 3
|
29 |
+
4: (255, 0, 255), # Magenta for class 4
|
30 |
+
5: (0, 255, 255), # Cyan for class 5
|
31 |
+
6: (128, 0, 0), # Maroon for class 6
|
32 |
+
7: (0, 128, 0), # Green (dark) for class 7
|
33 |
+
}
|
34 |
+
|
35 |
model = YOLO('modelbest.pt')
|
36 |
path = [['image_0.jpg'], ['image_1.jpg']]
|
37 |
video_path = [['video.mp4']]
|
|
|
42 |
results = outputs[0].cpu().numpy()
|
43 |
|
44 |
for i, det in enumerate(results.boxes.xyxy):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
class_id = int(results.boxes.cls[i])
|
46 |
+
label = model.names[class_id]
|
47 |
+
|
48 |
+
# Get the bounding box coordinates
|
49 |
+
x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3])
|
50 |
+
|
51 |
+
# Draw the bounding box with the specified color
|
52 |
+
color = colors.get(class_id, (0, 0, 255))
|
53 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2, cv2.LINE_AA)
|
54 |
|
55 |
+
# Calculate text size and position
|
56 |
+
label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2)
|
57 |
+
text_x = x1 + (x2 - x1) // 2 - label_size[0] // 2
|
58 |
+
text_y = y1 + (y2 - y1) // 2 + label_size[1] // 2
|
59 |
+
|
60 |
+
# Draw the label text
|
61 |
+
cv2.putText(image, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2, cv2.LINE_AA)
|
62 |
|
63 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
64 |
|
65 |
+
|
66 |
# def show_preds_image(image_path):
|
67 |
# image = cv2.imread(image_path)
|
68 |
# outputs = model.predict(source=image_path)
|
|
|
102 |
frame_copy = frame.copy()
|
103 |
outputs = model.predict(source=frame)
|
104 |
results = outputs[0].cpu().numpy()
|
105 |
+
|
106 |
for i, det in enumerate(results.boxes.xyxy):
|
107 |
+
class_id = int(results.boxes.cls[i])
|
108 |
+
label = model.names[class_id]
|
109 |
+
|
110 |
+
# Get the bounding box coordinates
|
111 |
+
x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3])
|
112 |
+
|
113 |
+
# Draw the bounding box with the specified color
|
114 |
+
color = colors.get(class_id, (0, 0, 255))
|
115 |
+
cv2.rectangle(frame_copy, (x1, y1), (x2, y2), color, 2, cv2.LINE_AA)
|
116 |
+
|
117 |
+
# Calculate text size and position
|
118 |
+
label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2)
|
119 |
+
text_x = x1 + (x2 - x1) // 2 - label_size[0] // 2
|
120 |
+
text_y = y1 + (y2 - y1) // 2 + label_size[1] // 2
|
121 |
+
|
122 |
+
# Draw the label text
|
123 |
+
cv2.putText(frame_copy, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2, cv2.LINE_AA)
|
124 |
+
|
125 |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
126 |
|
127 |
+
|
128 |
inputs_video = [
|
129 |
gr.Video(format="mp4", label="Input Video"),
|
130 |
]
|