HarshitJoshi commited on
Commit
3c5007c
·
verified ·
1 Parent(s): 951117d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -4
app.py CHANGED
@@ -5,9 +5,9 @@ import os
5
  from ultralytics import YOLO
6
 
7
  file_urls = [
8
- # 'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
9
- # 'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
10
- # 'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
11
  ]
12
 
13
  def download_file(url, save_name):
@@ -29,7 +29,9 @@ def show_preds_image(image_path):
29
  image = cv2.imread(image_path)
30
  outputs = model.predict(source=image_path)
31
  results = outputs[0].cpu().numpy()
 
32
  for i, det in enumerate(results.boxes.xyxy):
 
33
  cv2.rectangle(
34
  image,
35
  (int(det[0]), int(det[1])),
@@ -38,8 +40,36 @@ def show_preds_image(image_path):
38
  thickness=2,
39
  lineType=cv2.LINE_AA
40
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  inputs_image = [
44
  gr.Image(type="filepath", label="Input Image"),
45
  ]
@@ -51,7 +81,7 @@ interface_image = gr.Interface(
51
  fn=show_preds_image,
52
  inputs=inputs_image,
53
  outputs=outputs_image,
54
- title="Pothole detector",
55
  examples=path,
56
  cache_examples=False,
57
  )
 
5
  from ultralytics import YOLO
6
 
7
  file_urls = [
8
+ 'https://www.dropbox.com/scl/fi/kqd1z6wby1212c6ndodb3/Pol_20_jpg.rf.133c835b66958a7d48c12deeda31a719.jpg?rlkey=uqgvs2cwvahnmju15fv1zgorg&st=snv2yvtk&dl=0',
9
+ 'https://www.dropbox.com/scl/fi/39aakapeh2y5ztk94rsyu/11e-a347-3f2d_jpg.rf.c66e5aeb57ee2ed660fdf0162156127d.jpg?rlkey=xoi3iw45vksgiejycau2ha7fh&st=etiawigv&dl=0',
10
+ 'https://www.dropbox.com/scl/fi/8f08ehy53vsemw164g8n7/Recording2024-06-26184319.mp4?rlkey=pnmov906ttodl0cm92rpvc5ta&st=2twc9pjn&dl=0'
11
  ]
12
 
13
  def download_file(url, save_name):
 
29
  image = cv2.imread(image_path)
30
  outputs = model.predict(source=image_path)
31
  results = outputs[0].cpu().numpy()
32
+
33
  for i, det in enumerate(results.boxes.xyxy):
34
+ # Draw the bounding box
35
  cv2.rectangle(
36
  image,
37
  (int(det[0]), int(det[1])),
 
40
  thickness=2,
41
  lineType=cv2.LINE_AA
42
  )
43
+
44
+ # Get the class label and confidence score
45
+ class_id = int(results.boxes.cls[i])
46
+ confidence = results.boxes.conf[i]
47
+ label = f"{model.names[class_id]}: {confidence:.2f}"
48
+
49
+ # Draw the label
50
+ label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
51
+ top_left = (int(det[0]), int(det[1]) - 10)
52
+ bottom_right = (int(det[0]) + label_size[0], int(det[1]))
53
+ cv2.rectangle(image, top_left, bottom_right, (0, 0, 255), cv2.FILLED)
54
+ cv2.putText(image, label, (int(det[0]), int(det[1]) - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
55
+
56
  return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
57
 
58
+ # def show_preds_image(image_path):
59
+ # image = cv2.imread(image_path)
60
+ # outputs = model.predict(source=image_path)
61
+ # results = outputs[0].cpu().numpy()
62
+ # for i, det in enumerate(results.boxes.xyxy):
63
+ # cv2.rectangle(
64
+ # image,
65
+ # (int(det[0]), int(det[1])),
66
+ # (int(det[2]), int(det[3])),
67
+ # color=(0, 0, 255),
68
+ # thickness=2,
69
+ # lineType=cv2.LINE_AA
70
+ # )
71
+ # return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
72
+
73
  inputs_image = [
74
  gr.Image(type="filepath", label="Input Image"),
75
  ]
 
81
  fn=show_preds_image,
82
  inputs=inputs_image,
83
  outputs=outputs_image,
84
+ title="Smoke Detection on Indian Roads",
85
  examples=path,
86
  cache_examples=False,
87
  )