Spaces:
Sleeping
Sleeping
from typing import List | |
import os | |
import numpy as np | |
import torch | |
import gradio as gr | |
from PIL import Image | |
from transformers import AutoImageProcessor, AutoModelForObjectDetection | |
import supervision as sv | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
processor = AutoImageProcessor.from_pretrained("PekingU/rtdetr_r50vd_coco_o365") | |
model = AutoModelForObjectDetection.from_pretrained("PekingU/rtdetr_r50vd_coco_o365").to(device) | |
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() | |
MASK_ANNOTATOR = sv.MaskAnnotator() | |
LABEL_ANNOTATOR = sv.LabelAnnotator() | |
TRACKER = sv.ByteTrack() | |
def annotate_image(input_image: np.ndarray, detections, labels: List[str]) -> np.ndarray: | |
output_image = MASK_ANNOTATOR.annotate(input_image, detections) | |
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections) | |
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels) | |
return output_image | |
def process_image(input_image: np.ndarray, confidence_threshold: float): | |
results = query(Image.fromarray(input_image), confidence_threshold) | |
detections = sv.Detections.from_transformers(results[0]) | |
detections = TRACKER.update_with_detections(detections) | |
final_labels = [model.config.id2label[label] for label in detections.class_id.tolist()] | |
output_image = annotate_image(input_image, detections, final_labels) | |
return output_image, ", ".join(final_labels) | |
def query(image: Image.Image, confidence_threshold: float): | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs=outputs, threshold=confidence_threshold, target_sizes=target_sizes) | |
return results | |
def run_demo(): | |
input_image = gr.Image(label="Input Image", type="numpy") | |
conf = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, value=0.6, step=0.05) | |
output_image = gr.Image(label="Output Image", type="numpy") | |
output_text = gr.Textbox(label="Detected Classes") | |
def process_and_display(input_image, conf): | |
output_img, detected_classes = process_image(input_image, conf) | |
return output_img, detected_classes | |
gr.Interface( | |
fn=process_and_display, | |
inputs=[input_image, conf], | |
outputs=[output_image, output_text], | |
title="Real Time Object Detection with RT-DETR", | |
description="This demo uses RT-DETR for object detection in images. Adjust the confidence threshold to see different results.", | |
).launch() | |
if __name__ == "__main__": | |
run_demo() | |