Spaces:
Running
Running
import torch | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
from diffusers.utils import export_to_gif | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import gradio as gr | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
step = 4 # Options: [1,2,4,8] | |
repo = "ByteDance/AnimateDiff-Lightning" | |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" | |
base = "emilianJR/epiCRealism" | |
adapter = MotionAdapter().to(device, dtype) | |
adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device)) | |
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
def animate_image(prompt, guidance_scale, num_inference_steps): | |
output = pipe(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps) | |
gif_path = "animation.gif" | |
export_to_gif(output.frames[0], gif_path) | |
return gif_path | |
# Define the Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# AnimateDiff API") | |
with gr.Row(): | |
prompt = gr.Textbox(label="Prompt", placeholder="A girl smiling", value="A girl smiling") | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, value=1.0, step=0.1) | |
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=8, value=step, step=1) | |
gif_output = gr.Image(label="Generated Animation") | |
# Button to run the pipeline | |
run_button = gr.Button("Generate Animation") | |
run_button.click(animate_image, inputs=[prompt, guidance_scale, num_inference_steps], outputs=[gif_output]) | |
# Launch the interface | |
demo.launch() | |