Spaces:
Running
Running
File size: 1,986 Bytes
04f475a 94c304e 04f475a 94c304e 04f475a ff3533c 94c304e ff3533c f825898 04f475a f825898 04f475a f825898 94c304e ff3533c f825898 94c304e ff3533c 94c304e f825898 ff3533c 94c304e ff3533c 94c304e 04f475a f825898 04f475a f825898 94c304e 04f475a f825898 ff3533c f825898 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import streamlit as st
from transformers import pipeline
from PIL import Image
import openai
# Set your OpenAI API key
openai.api_key = "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"
# OpenAI model to use
OPENAI_MODEL = "gpt-4o" # Replace with the model you want to display
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Function to generate ingredients using OpenAI
def get_ingredients_openai(food_name):
prompt = f"List the main ingredients typically used to prepare {food_name}:"
response = openai.Completion.create(
engine=OPENAI_MODEL,
prompt=prompt,
max_tokens=50
)
return response['choices'][0]['text'].strip()
# Streamlit app
st.title("Food Image Recognition with Ingredients")
# Display OpenAI model being used
st.sidebar.title("Model Information")
st.sidebar.write(f"**OpenAI Model Used**: {OPENAI_MODEL}")
# Upload image
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Classifying...")
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("Ingredients")
try:
ingredients = get_ingredients_openai(top_food)
st.write(ingredients)
except Exception as e:
st.write("Could not generate ingredients. Please try again later.") |