hatmanstack commited on
Commit
8581f9c
·
1 Parent(s): 938bf7e

Back to Zero

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import gradio as gr
2
- #import spaces ## For ZeroGPU
3
  import torch
4
  import torchaudio
5
  from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
@@ -15,7 +15,7 @@ def preprocess_audio(audio):
15
  resampled_waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform)
16
  return {'speech': resampled_waveform.numpy().flatten(), 'sampling_rate': 16000}
17
 
18
- #@spaces.GPU ## For ZeroGPU
19
  def inference(audio):
20
  example = preprocess_audio(audio)
21
  inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
@@ -25,7 +25,7 @@ def inference(audio):
25
  predicted_ids = torch.argmax(logits, dim=-1)
26
  return model.config.id2label[predicted_ids.item()], logits, predicted_ids
27
 
28
- #@spaces.GPU ## For ZeroGPU
29
  def inference_label(audio):
30
  example = preprocess_audio(audio)
31
  inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
 
1
  import gradio as gr
2
+ import spaces ## For ZeroGPU
3
  import torch
4
  import torchaudio
5
  from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
 
15
  resampled_waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform)
16
  return {'speech': resampled_waveform.numpy().flatten(), 'sampling_rate': 16000}
17
 
18
+ @spaces.GPU ## For ZeroGPU
19
  def inference(audio):
20
  example = preprocess_audio(audio)
21
  inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
 
25
  predicted_ids = torch.argmax(logits, dim=-1)
26
  return model.config.id2label[predicted_ids.item()], logits, predicted_ids
27
 
28
+ @spaces.GPU ## For ZeroGPU
29
  def inference_label(audio):
30
  example = preprocess_audio(audio)
31
  inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)