File size: 9,294 Bytes
4d01430 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/kim-korea" # ํน์ ์ ์น์ธ์ ํ์ตํ LoRA ๋ชจ๋ธ
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
@spaces.GPU(duration=60)
def inference(
prompt,
seed=42,
randomize_seed=True,
width=1024,
height=768,
guidance_scale=3.5,
num_inference_steps=30,
lora_scale=1.0,
progress=None,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(int(seed))
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return just the image and seed
return image, seed
# ์์ ๋ฌธ๊ตฌ: ํน์ ์ ์น์ธ Mr. KIM์ ๋ค์ํ ์ํฉ์ ๋ฌ์ฌ
examples = [
"Mr. KIM holding up a 'Fighting!' banner with both hands, showing patriotic pride and determination for national excellence. ",
"Mr. KIM raising both arms in celebration with a triumphant expression, showing victory and hope for the future.",
"Mr. KIM jogging in a park wearing athletic gear, demonstrating healthy lifestyle and energetic leadership qualities.",
"Mr. KIM warmly shaking hands with female citizens in a crowded street, showing genuine care and connection with women voters. ",
"Mr. KIM at a campaign rally, pointing toward the horizon with an inspiring gesture while female and kids audience members applaud. ",
"Mr. KIM participating in a community event, surrounded by enthusiastic female supporters cheering ",
"Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers. ",
"Mr. KIM walking through a university campus, discussing education policies with female students and professors. ",
"Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression. ",
"Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
"Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute. ",
]
# UI๋ฅผ ๋ถ์ ๊ณ์ด ๊ทธ๋ผ๋์์ด์
์ผ๋ก ๋์์ธ
custom_css = """
:root {
--color-primary: #8F1A3A; /* ๋ถ์ ํค์ ๋ฉ์ธ ์ปฌ๋ฌ */
--color-secondary: #FF4B4B; /* ํฌ์ธํธ ์ปฌ๋ฌ(๋ฐ์ ๋นจ๊ฐ) */
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
}
footer {
visibility: hidden;
}
.gradio-container {
background: var(--background-fill-primary);
}
.title {
color: var(--color-primary) !important;
font-size: 3rem !important;
font-weight: 700 !important;
text-align: center;
margin: 1rem 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.05);
font-family: 'Playfair Display', serif;
}
.subtitle {
color: #4A5568 !important;
font-size: 1.2rem !important;
text-align: center;
margin-bottom: 1.5rem;
font-style: italic;
}
.collection-link {
text-align: center;
margin-bottom: 2rem;
font-size: 1.1rem;
}
.collection-link a {
color: var(--color-primary);
text-decoration: underline;
transition: color 0.3s ease;
}
.collection-link a:hover {
color: var(--color-secondary);
}
.model-description {
background-color: rgba(255, 255, 255, 0.8);
border-radius: 12px;
padding: 24px;
margin: 20px 0;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
border-left: 5px solid var(--color-primary);
}
button.primary {
background-color: var(--color-primary) !important;
transition: all 0.3s ease;
color: #fff !important;
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.input-container {
border-radius: 10px;
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
background-color: rgba(255, 255, 255, 0.6);
padding: 20px;
margin-bottom: 1rem;
}
.advanced-settings {
margin-top: 1rem;
padding: 1rem;
border-radius: 10px;
background-color: rgba(255, 255, 255, 0.6);
}
.example-region {
background-color: rgba(255, 255, 255, 0.5);
border-radius: 10px;
padding: 1rem;
margin-top: 1rem;
}
"""
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
# ์ปฌ๋ ์
๋งํฌ ๋๋ ์๋ด๋ฌธ์ ํ์ ์ ์์ /์ญ์
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
# ๋ชจ๋ธ ์ค๋ช
: ํน์ ์ ์น์ธ์ ๋ํ LoRA ๋ชจ๋ธ์์ ์ธ๊ธ
with gr.Group(elem_classes="model-description"):
gr.HTML("""
<p>
๋ณธ ๋ชจ๋ธ์ ์ฐ๊ตฌ ๋ชฉ์ ์ผ๋ก ํน์ ์ธ์ ์ผ๊ตด๊ณผ ์ธ๋ชจ๋ฅผ ํ์ตํ LoRA ๋ชจ๋ธ์
๋๋ค.<br>
๋ชฉ์ ์ธ์ ์ฉ๋๋ก ๋ฌด๋จ ์ฌ์ฉ ์๋๋ก ์ ์ํด ์ฃผ์ธ์.<br>
(์์ prompt ์ฌ์ฉ ์ ๋ฐ๋์ 'kim'์ ํฌํจํ์ฌ์ผ ์ต์ ์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ต๋๋ค.)
</p>
""")
# ๋ฉ์ธ UI
with gr.Column(elem_id="col-container"):
with gr.Row(elem_classes="input-container"):
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt (add [trigger] at the end)",
value=examples[0] # ๊ธฐ๋ณธ ์์
)
run_button = gr.Button("Generate", variant="primary", scale=0)
result = gr.Image(label="Generated Image")
seed_output = gr.Number(label="Seed", visible=True)
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Group(elem_classes="example-region"):
gr.Markdown("### Examples")
gr.Examples(
examples=examples,
inputs=prompt,
outputs=None, # Don't auto-run examples
fn=None, # No function to run for examples - just fill the prompt
cache_examples=False,
)
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed_output],
)
demo.queue()
demo.launch()
|