File size: 9,695 Bytes
94973e7 2caf84c 94973e7 6f263dc 94973e7 6f263dc 0e0ee20 94973e7 6f263dc 0e0ee20 94973e7 0e0ee20 568fd3b 6f263dc 94973e7 0e0ee20 6f263dc c724573 94973e7 00a3371 c724573 94973e7 0e0ee20 94973e7 c59400c 6f263dc 94973e7 6f263dc 94973e7 c724573 6f263dc 41cb504 6f263dc 94973e7 6f263dc 94973e7 6f263dc 94973e7 6f263dc c1c32c3 6f263dc 94973e7 6f263dc c1c32c3 6f263dc 94973e7 6f263dc 94973e7 6f263dc 00a3371 94973e7 6f263dc f647d1f 6f263dc 94973e7 00a3371 6f263dc 94973e7 00a3371 c1c32c3 00a3371 4738ce5 6f263dc e9b83f7 6f263dc 94973e7 6f263dc 459b9da 6f263dc e9b83f7 6f263dc 41cb504 22a9414 6f263dc 22a9414 6f263dc 22a9414 6f263dc e9b83f7 6f263dc 0e0ee20 6f263dc 94973e7 6f263dc 94973e7 6f263dc 5ce58bf 6f263dc 94973e7 00a3371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import random
import os
import uuid
import re
import time
from datetime import datetime
import gradio as gr
import numpy as np
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# ===== OpenAI ์ค์ =====
from openai import OpenAI
client = OpenAI(api_key=os.getenv("LLM_API")) # ํ๊ฒฝ ๋ณ์์ API ํค๊ฐ ์์ด์ผ ํฉ๋๋ค.
# ===== ํ๋กฌํํธ ์ฆ๊ฐ์ฉ ์คํ์ผ ํ๋ฆฌ์
=====
STYLE_PRESETS = {
"None": "",
"Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
"Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
"Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
"Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
}
# ===== ์ ์ฅ ํด๋ =====
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
# ===== ๋๋ฐ์ด์ค & ๋ชจ๋ธ ๋ก๋ =====
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/kim-korea" # ํน์ ์ ์น์ธ์ ํ์ตํ LoRA ๋ชจ๋ธ
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# ===== ํ๊ธ ์ฌ๋ถ ํ๋ณ =====
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")
def is_korean(text: str) -> bool:
return bool(HANGUL_RE.search(text))
# ===== ๋ฒ์ญ & ์ฆ๊ฐ ํจ์ =====
def openai_translate(text: str, retries: int = 3) -> str:
"""ํ๊ธ์ ์์ด๋ก ๋ฒ์ญ (OpenAI GPT-4.1-mini ์ฌ์ฉ). ์์ด ์
๋ ฅ์ด๋ฉด ๊ทธ๋๋ก ๋ฐํ."""
if not is_korean(text):
return text
for attempt in range(retries):
try:
res = client.chat.completions.create(
model="gpt-4.1-mini",
messages=[
{
"role": "system",
"content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
},
{"role": "user", "content": text}
],
temperature=0.3,
max_tokens=256,
)
return res.choices[0].message.content.strip()
except (requests.exceptions.RequestException, Exception) as e:
print(f"[translate] attempt {attempt + 1} failed: {e}")
time.sleep(2)
return text # ๋ฒ์ญ ์คํจ ์ ์๋ฌธ ๊ทธ๋๋ก
def prepare_prompt(user_prompt: str, style_key: str) -> str:
"""ํ๊ธ์ด๋ฉด ๋ฒ์ญํ๊ณ , ์ ํํ ์คํ์ผ ํ๋ฆฌ์
์ ๋ถ์ฌ์ ์ต์ข
ํ๋กฌํํธ๋ฅผ ๋ง๋ ๋ค."""
prompt_en = openai_translate(user_prompt)
style_suffix = STYLE_PRESETS.get(style_key, "")
if style_suffix:
final_prompt = f"{prompt_en}, {style_suffix}"
else:
final_prompt = prompt_en
return final_prompt
# ===== ์ด๋ฏธ์ง ์ ์ฅ =====
def save_generated_image(image: Image.Image, prompt: str) -> str:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
image.save(filepath)
# ๋ฉํ๋ฐ์ดํฐ ์ ์ฅ
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
# ===== Diffusion ํธ์ถ =====
def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
generator = torch.Generator(device=device).manual_seed(int(seed))
result = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return result
# ===== Gradio inference ๋ํผ =====
@spaces.GPU(duration=60)
def generate_image(
user_prompt: str,
style_key: str,
seed: int = 42,
randomize_seed: bool = True,
width: int = 1024,
height: int = 768,
guidance_scale: float = 3.5,
num_inference_steps: int = 30,
lora_scale: float = 1.0,
progress=None,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# 1) ๋ฒ์ญ + ์ฆ๊ฐ
final_prompt = prepare_prompt(user_prompt, style_key)
# 2) ํ์ดํ๋ผ์ธ ํธ์ถ
image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale)
# 3) ์ ์ฅ
save_generated_image(image, final_prompt)
return image, seed
# ===== ์์ ํ๋กฌํํธ (ํ๊ตญ์ด/์์ด ํผ์ฉ ํ์ฉ) =====
examples = [
"๊น ํ๋ณด๊ฐ ํ๊ทน๊ธฐ๋ฅผ ๋ค๊ณ ํ์ฐฌ ๋ฏธ์๋ฅผ ์ง๋ ๋ชจ์ต์ 8K๋ก", # ํ๊ธ ์์ (์๋ ๋ฒ์ญ)
"Mr. KIM raising both arms in celebration with a triumphant expression, showing victory and hope for the future.",
"๊น ํ๋ณด๊ฐ ๊ณต์์์ ์กฐ๊น
์ค ๊ฑด๊ฐํ ๋ฆฌ๋์ญ์ ๋ณด์ฌ์ฃผ๋ ์ฅ๋ฉด", # ํ๊ธ ์์
]
# ===== ์ปค์คํ
CSS (๋ถ์ ํค ์ ์ง) =====
custom_css = """
:root {
--color-primary: #8F1A3A;
--color-secondary: #FF4B4B;
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
}
footer {visibility: hidden;}
.gradio-container {background: var(--background-fill-primary);}
.title {color: var(--color-primary)!important; font-size:3rem!important; font-weight:700!important; text-align:center; margin:1rem 0; font-family:'Playfair Display',serif;}
.subtitle {color:#4A5568!important; font-size:1.2rem!important; text-align:center; margin-bottom:1.5rem; font-style:italic;}
.collection-link {text-align:center; margin-bottom:2rem; font-size:1.1rem;}
.collection-link a {color:var(--color-primary); text-decoration:underline; transition:color .3s ease;}
.collection-link a:hover {color:var(--color-secondary);}
.model-description{background:rgba(255,255,255,.8); border-radius:12px; padding:24px; margin:20px 0; box-shadow:0 4px 12px rgba(0,0,0,.05); border-left:5px solid var(--color-primary);}
button.primary{background:var(--color-primary)!important; color:#fff!important; transition:all .3s ease;}
button:hover{transform:translateY(-2px); box-shadow:0 5px 15px rgba(0,0,0,.1);}
.input-container{border-radius:10px; box-shadow:0 2px 8px rgba(0,0,0,.05); background:rgba(255,255,255,.6); padding:20px; margin-bottom:1rem;}
.advanced-settings{margin-top:1rem; padding:1rem; border-radius:10px; background:rgba(255,255,255,.6);}
.example-region{background:rgba(255,255,255,.5); border-radius:10px; padding:1rem; margin-top:1rem;}
"""
# ===== Gradio UI =====
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
with gr.Group(elem_classes="model-description"):
gr.HTML("""
<p>
๋ณธ ๋ชจ๋ธ์ ์ฐ๊ตฌ ๋ชฉ์ ์ผ๋ก ํน์ ์ธ์ ์ผ๊ตด๊ณผ ์ธ๋ชจ๋ฅผ ํ์ตํ LoRA ๋ชจ๋ธ์
๋๋ค.<br>
๋ชฉ์ ์ธ์ ์ฉ๋๋ก ๋ฌด๋จ ์ฌ์ฉ ์๋๋ก ์ ์ํด ์ฃผ์ธ์.<br>
(์์ prompt ์ฌ์ฉ ์ ๋ฐ๋์ 'kim'์ ํฌํจํ์ฌ์ผ ์ต์ ์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ต๋๋ค.)
</p>
""")
# ===== ๋ฉ์ธ ์
๋ ฅ =====
with gr.Column():
with gr.Row(elem_classes="input-container"):
user_prompt = gr.Text(label="Prompt", max_lines=1, value=examples[0])
style_select = gr.Radio(label="Style Preset", choices=list(STYLE_PRESETS.keys()), value="None", interactive=True)
run_button = gr.Button("Generate", variant="primary")
result_image = gr.Image(label="Generated Image")
seed_output = gr.Number(label="Seed")
# ===== ๊ณ ๊ธ ์ค์ =====
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=30)
lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0)
# ===== ์์ ์์ญ =====
with gr.Group(elem_classes="example-region"):
gr.Markdown("### Examples")
gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)
# ===== ์ด๋ฒคํธ =====
run_button.click(
fn=generate_image,
inputs=[
user_prompt,
style_select,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result_image, seed_output],
)
demo.queue()
demo.launch()
|