Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,37 @@
|
|
1 |
import random
|
2 |
import os
|
3 |
import uuid
|
|
|
|
|
4 |
from datetime import datetime
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
import torch
|
9 |
from diffusers import DiffusionPipeline
|
10 |
from PIL import Image
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
14 |
if not os.path.exists(SAVE_DIR):
|
15 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
16 |
|
|
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
19 |
adapter_id = "seawolf2357/kim-korea" # ํน์ ์ ์น์ธ์ ํ์ตํ LoRA ๋ชจ๋ธ
|
@@ -25,171 +43,142 @@ pipeline = pipeline.to(device)
|
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 1024
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
31 |
unique_id = str(uuid.uuid4())[:8]
|
32 |
filename = f"{timestamp}_{unique_id}.png"
|
33 |
filepath = os.path.join(SAVE_DIR, filename)
|
34 |
-
|
35 |
-
# Save the image
|
36 |
image.save(filepath)
|
37 |
-
|
38 |
-
#
|
39 |
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
40 |
with open(metadata_file, "a", encoding="utf-8") as f:
|
41 |
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
42 |
-
|
43 |
return filepath
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
seed=42,
|
49 |
-
randomize_seed=True,
|
50 |
-
width=1024,
|
51 |
-
height=768,
|
52 |
-
guidance_scale=3.5,
|
53 |
-
num_inference_steps=30,
|
54 |
-
lora_scale=1.0,
|
55 |
-
progress=None,
|
56 |
-
):
|
57 |
-
if randomize_seed:
|
58 |
-
seed = random.randint(0, MAX_SEED)
|
59 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
60 |
-
|
61 |
-
image = pipeline(
|
62 |
prompt=prompt,
|
63 |
guidance_scale=guidance_scale,
|
64 |
-
num_inference_steps=
|
65 |
width=width,
|
66 |
height=height,
|
67 |
generator=generator,
|
68 |
joint_attention_kwargs={"scale": lora_scale},
|
69 |
).images[0]
|
70 |
-
|
71 |
-
# Save the generated image
|
72 |
-
filepath = save_generated_image(image, prompt)
|
73 |
-
|
74 |
-
# Return just the image and seed
|
75 |
-
return image, seed
|
76 |
|
77 |
-
#
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
examples = [
|
80 |
-
"
|
81 |
"Mr. KIM raising both arms in celebration with a triumphant expression, showing victory and hope for the future.",
|
82 |
-
"
|
83 |
-
"Mr. KIM warmly shaking hands with female citizens in a crowded street, showing genuine care and connection with women voters. ",
|
84 |
-
"Mr. KIM at a campaign rally, pointing toward the horizon with an inspiring gesture while female and kids audience members applaud. ",
|
85 |
-
"Mr. KIM participating in a community event, surrounded by enthusiastic female supporters cheering ",
|
86 |
-
"Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers. ",
|
87 |
-
"Mr. KIM walking through a university campus, discussing education policies with female students and professors. ",
|
88 |
-
"Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression. ",
|
89 |
-
"Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
|
90 |
-
"Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute. ",
|
91 |
]
|
92 |
|
93 |
-
#
|
94 |
custom_css = """
|
95 |
:root {
|
96 |
-
--color-primary: #8F1A3A;
|
97 |
-
--color-secondary: #FF4B4B;
|
98 |
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
|
99 |
}
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
}
|
104 |
-
|
105 |
-
.
|
106 |
-
|
107 |
-
}
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
text-align: center;
|
114 |
-
margin: 1rem 0;
|
115 |
-
text-shadow: 2px 2px 4px rgba(0,0,0,0.05);
|
116 |
-
font-family: 'Playfair Display', serif;
|
117 |
-
}
|
118 |
-
|
119 |
-
.subtitle {
|
120 |
-
color: #4A5568 !important;
|
121 |
-
font-size: 1.2rem !important;
|
122 |
-
text-align: center;
|
123 |
-
margin-bottom: 1.5rem;
|
124 |
-
font-style: italic;
|
125 |
-
}
|
126 |
-
|
127 |
-
.collection-link {
|
128 |
-
text-align: center;
|
129 |
-
margin-bottom: 2rem;
|
130 |
-
font-size: 1.1rem;
|
131 |
-
}
|
132 |
-
|
133 |
-
.collection-link a {
|
134 |
-
color: var(--color-primary);
|
135 |
-
text-decoration: underline;
|
136 |
-
transition: color 0.3s ease;
|
137 |
-
}
|
138 |
-
|
139 |
-
.collection-link a:hover {
|
140 |
-
color: var(--color-secondary);
|
141 |
-
}
|
142 |
-
|
143 |
-
.model-description {
|
144 |
-
background-color: rgba(255, 255, 255, 0.8);
|
145 |
-
border-radius: 12px;
|
146 |
-
padding: 24px;
|
147 |
-
margin: 20px 0;
|
148 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
|
149 |
-
border-left: 5px solid var(--color-primary);
|
150 |
-
}
|
151 |
-
|
152 |
-
button.primary {
|
153 |
-
background-color: var(--color-primary) !important;
|
154 |
-
transition: all 0.3s ease;
|
155 |
-
color: #fff !important;
|
156 |
-
}
|
157 |
-
|
158 |
-
button:hover {
|
159 |
-
transform: translateY(-2px);
|
160 |
-
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
161 |
-
}
|
162 |
-
|
163 |
-
.input-container {
|
164 |
-
border-radius: 10px;
|
165 |
-
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
|
166 |
-
background-color: rgba(255, 255, 255, 0.6);
|
167 |
-
padding: 20px;
|
168 |
-
margin-bottom: 1rem;
|
169 |
-
}
|
170 |
-
|
171 |
-
.advanced-settings {
|
172 |
-
margin-top: 1rem;
|
173 |
-
padding: 1rem;
|
174 |
-
border-radius: 10px;
|
175 |
-
background-color: rgba(255, 255, 255, 0.6);
|
176 |
-
}
|
177 |
-
|
178 |
-
.example-region {
|
179 |
-
background-color: rgba(255, 255, 255, 0.5);
|
180 |
-
border-radius: 10px;
|
181 |
-
padding: 1rem;
|
182 |
-
margin-top: 1rem;
|
183 |
-
}
|
184 |
"""
|
185 |
|
|
|
186 |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
187 |
gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
|
188 |
-
|
189 |
-
# ์ปฌ๋ ์
๋งํฌ ๋๋ ์๋ด๋ฌธ์ ํ์ ์ ์์ /์ญ์
|
190 |
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
|
191 |
-
|
192 |
-
# ๋ชจ๋ธ ์ค๋ช
: ํน์ ์ ์น์ธ์ ๋ํ LoRA ๋ชจ๋ธ์์ ์ธ๊ธ
|
193 |
with gr.Group(elem_classes="model-description"):
|
194 |
gr.HTML("""
|
195 |
<p>
|
@@ -199,85 +188,39 @@ with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
199 |
</p>
|
200 |
""")
|
201 |
|
202 |
-
# ๋ฉ์ธ
|
203 |
-
with gr.Column(
|
204 |
with gr.Row(elem_classes="input-container"):
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
placeholder="Enter your prompt (add [trigger] at the end)",
|
209 |
-
value=examples[0] # ๊ธฐ๋ณธ ์์
|
210 |
-
)
|
211 |
-
run_button = gr.Button("Generate", variant="primary", scale=0)
|
212 |
|
213 |
-
|
214 |
-
seed_output = gr.Number(label="Seed"
|
215 |
|
|
|
216 |
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
|
217 |
-
seed = gr.Slider(
|
218 |
-
label="Seed",
|
219 |
-
minimum=0,
|
220 |
-
maximum=MAX_SEED,
|
221 |
-
step=1,
|
222 |
-
value=42,
|
223 |
-
)
|
224 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
225 |
-
|
226 |
with gr.Row():
|
227 |
-
width = gr.Slider(
|
228 |
-
|
229 |
-
minimum=256,
|
230 |
-
maximum=MAX_IMAGE_SIZE,
|
231 |
-
step=32,
|
232 |
-
value=1024,
|
233 |
-
)
|
234 |
-
height = gr.Slider(
|
235 |
-
label="Height",
|
236 |
-
minimum=256,
|
237 |
-
maximum=MAX_IMAGE_SIZE,
|
238 |
-
step=32,
|
239 |
-
value=768,
|
240 |
-
)
|
241 |
-
|
242 |
with gr.Row():
|
243 |
-
guidance_scale = gr.Slider(
|
244 |
-
|
245 |
-
|
246 |
-
maximum=10.0,
|
247 |
-
step=0.1,
|
248 |
-
value=3.5,
|
249 |
-
)
|
250 |
-
num_inference_steps = gr.Slider(
|
251 |
-
label="Number of inference steps",
|
252 |
-
minimum=1,
|
253 |
-
maximum=50,
|
254 |
-
step=1,
|
255 |
-
value=30,
|
256 |
-
)
|
257 |
-
lora_scale = gr.Slider(
|
258 |
-
label="LoRA scale",
|
259 |
-
minimum=0.0,
|
260 |
-
maximum=1.0,
|
261 |
-
step=0.1,
|
262 |
-
value=1.0,
|
263 |
-
)
|
264 |
|
|
|
265 |
with gr.Group(elem_classes="example-region"):
|
266 |
gr.Markdown("### Examples")
|
267 |
-
gr.Examples(
|
268 |
-
examples=examples,
|
269 |
-
inputs=prompt,
|
270 |
-
outputs=None, # Don't auto-run examples
|
271 |
-
fn=None, # No function to run for examples - just fill the prompt
|
272 |
-
cache_examples=False,
|
273 |
-
)
|
274 |
|
275 |
-
# ์ด๋ฒคํธ
|
276 |
-
|
277 |
-
|
278 |
-
fn=inference,
|
279 |
inputs=[
|
280 |
-
|
|
|
281 |
seed,
|
282 |
randomize_seed,
|
283 |
width,
|
@@ -286,8 +229,9 @@ with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
|
286 |
num_inference_steps,
|
287 |
lora_scale,
|
288 |
],
|
289 |
-
outputs=[
|
290 |
)
|
291 |
|
|
|
292 |
demo.queue()
|
293 |
demo.launch()
|
|
|
1 |
import random
|
2 |
import os
|
3 |
import uuid
|
4 |
+
import re
|
5 |
+
import time
|
6 |
from datetime import datetime
|
7 |
+
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
+
import requests
|
11 |
import torch
|
12 |
from diffusers import DiffusionPipeline
|
13 |
from PIL import Image
|
14 |
|
15 |
+
# ===== OpenAI ์ค์ =====
|
16 |
+
from openai import OpenAI
|
17 |
+
|
18 |
+
client = OpenAI(api_key=os.getenv("LLM_API")) # ํ๊ฒฝ ๋ณ์์ API ํค๊ฐ ์์ด์ผ ํฉ๋๋ค.
|
19 |
+
|
20 |
+
# ===== ํ๋กฌํํธ ์ฆ๊ฐ์ฉ ์คํ์ผ ํ๋ฆฌ์
=====
|
21 |
+
STYLE_PRESETS = {
|
22 |
+
"None": "",
|
23 |
+
"Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
|
24 |
+
"Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
|
25 |
+
"Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
|
26 |
+
"Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
|
27 |
+
}
|
28 |
+
|
29 |
+
# ===== ์ ์ฅ ํด๋ =====
|
30 |
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
31 |
if not os.path.exists(SAVE_DIR):
|
32 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
33 |
|
34 |
+
# ===== ๋๋ฐ์ด์ค & ๋ชจ๋ธ ๋ก๋ =====
|
35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
37 |
adapter_id = "seawolf2357/kim-korea" # ํน์ ์ ์น์ธ์ ํ์ตํ LoRA ๋ชจ๋ธ
|
|
|
43 |
MAX_SEED = np.iinfo(np.int32).max
|
44 |
MAX_IMAGE_SIZE = 1024
|
45 |
|
46 |
+
# ===== ํ๊ธ ์ฌ๋ถ ํ๋ณ =====
|
47 |
+
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")
|
48 |
+
|
49 |
+
def is_korean(text: str) -> bool:
|
50 |
+
return bool(HANGUL_RE.search(text))
|
51 |
+
|
52 |
+
# ===== ๋ฒ์ญ & ์ฆ๊ฐ ํจ์ =====
|
53 |
+
|
54 |
+
def openai_translate(text: str, retries: int = 3) -> str:
|
55 |
+
"""ํ๊ธ์ ์์ด๋ก ๋ฒ์ญ (OpenAI GPT-4.1-mini ์ฌ์ฉ). ์์ด ์
๋ ฅ์ด๋ฉด ๊ทธ๋๋ก ๋ฐํ."""
|
56 |
+
if not is_korean(text):
|
57 |
+
return text
|
58 |
+
|
59 |
+
for attempt in range(retries):
|
60 |
+
try:
|
61 |
+
res = client.chat.completions.create(
|
62 |
+
model="gpt-4.1-mini",
|
63 |
+
messages=[
|
64 |
+
{
|
65 |
+
"role": "system",
|
66 |
+
"content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
|
67 |
+
},
|
68 |
+
{"role": "user", "content": text}
|
69 |
+
],
|
70 |
+
temperature=0.3,
|
71 |
+
max_tokens=256,
|
72 |
+
)
|
73 |
+
return res.choices[0].message.content.strip()
|
74 |
+
except (requests.exceptions.RequestException, Exception) as e:
|
75 |
+
print(f"[translate] attempt {attempt + 1} failed: {e}")
|
76 |
+
time.sleep(2)
|
77 |
+
return text # ๋ฒ์ญ ์คํจ ์ ์๋ฌธ ๊ทธ๋๋ก
|
78 |
+
|
79 |
+
def prepare_prompt(user_prompt: str, style_key: str) -> str:
|
80 |
+
"""ํ๊ธ์ด๋ฉด ๋ฒ์ญํ๊ณ , ์ ํํ ์คํ์ผ ํ๋ฆฌ์
์ ๋ถ์ฌ์ ์ต์ข
ํ๋กฌํํธ๋ฅผ ๋ง๋ ๋ค."""
|
81 |
+
prompt_en = openai_translate(user_prompt)
|
82 |
+
style_suffix = STYLE_PRESETS.get(style_key, "")
|
83 |
+
if style_suffix:
|
84 |
+
final_prompt = f"{prompt_en}, {style_suffix}"
|
85 |
+
else:
|
86 |
+
final_prompt = prompt_en
|
87 |
+
return final_prompt
|
88 |
+
|
89 |
+
# ===== ์ด๋ฏธ์ง ์ ์ฅ =====
|
90 |
+
|
91 |
+
def save_generated_image(image: Image.Image, prompt: str) -> str:
|
92 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
93 |
unique_id = str(uuid.uuid4())[:8]
|
94 |
filename = f"{timestamp}_{unique_id}.png"
|
95 |
filepath = os.path.join(SAVE_DIR, filename)
|
|
|
|
|
96 |
image.save(filepath)
|
97 |
+
|
98 |
+
# ๋ฉํ๋ฐ์ดํฐ ์ ์ฅ
|
99 |
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
100 |
with open(metadata_file, "a", encoding="utf-8") as f:
|
101 |
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
|
|
102 |
return filepath
|
103 |
|
104 |
+
# ===== Diffusion ํธ์ถ =====
|
105 |
+
|
106 |
+
def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
generator = torch.Generator(device=device).manual_seed(int(seed))
|
108 |
+
result = pipeline(
|
|
|
109 |
prompt=prompt,
|
110 |
guidance_scale=guidance_scale,
|
111 |
+
num_inference_steps=num_steps,
|
112 |
width=width,
|
113 |
height=height,
|
114 |
generator=generator,
|
115 |
joint_attention_kwargs={"scale": lora_scale},
|
116 |
).images[0]
|
117 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
# ===== Gradio inference ๋ํผ =====
|
120 |
|
121 |
+
@spaces.GPU(duration=60)
|
122 |
+
def generate_image(
|
123 |
+
user_prompt: str,
|
124 |
+
style_key: str,
|
125 |
+
seed: int = 42,
|
126 |
+
randomize_seed: bool = True,
|
127 |
+
width: int = 1024,
|
128 |
+
height: int = 768,
|
129 |
+
guidance_scale: float = 3.5,
|
130 |
+
num_inference_steps: int = 30,
|
131 |
+
lora_scale: float = 1.0,
|
132 |
+
progress=None,
|
133 |
+
):
|
134 |
+
if randomize_seed:
|
135 |
+
seed = random.randint(0, MAX_SEED)
|
136 |
+
|
137 |
+
# 1) ๋ฒ์ญ + ์ฆ๊ฐ
|
138 |
+
final_prompt = prepare_prompt(user_prompt, style_key)
|
139 |
+
|
140 |
+
# 2) ํ์ดํ๋ผ์ธ ํธ์ถ
|
141 |
+
image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale)
|
142 |
+
|
143 |
+
# 3) ์ ์ฅ
|
144 |
+
save_generated_image(image, final_prompt)
|
145 |
+
|
146 |
+
return image, seed
|
147 |
+
|
148 |
+
# ===== ์์ ํ๋กฌํํธ (ํ๊ตญ์ด/์์ด ํผ์ฉ ํ์ฉ) =====
|
149 |
examples = [
|
150 |
+
"๊น ํ๋ณด๊ฐ ํ๊ทน๊ธฐ๋ฅผ ๋ค๊ณ ํ์ฐฌ ๋ฏธ์๋ฅผ ์ง๋ ๋ชจ์ต์ 8K๋ก", # ํ๊ธ ์์ (์๋ ๋ฒ์ญ)
|
151 |
"Mr. KIM raising both arms in celebration with a triumphant expression, showing victory and hope for the future.",
|
152 |
+
"๊น ํ๋ณด๊ฐ ๊ณต์์์ ์กฐ๊น
์ค ๊ฑด๊ฐํ ๋ฆฌ๋์ญ์ ๋ณด์ฌ์ฃผ๋ ์ฅ๋ฉด", # ํ๊ธ ์์
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
]
|
154 |
|
155 |
+
# ===== ์ปค์คํ
CSS (๋ถ์ ํค ์ ์ง) =====
|
156 |
custom_css = """
|
157 |
:root {
|
158 |
+
--color-primary: #8F1A3A;
|
159 |
+
--color-secondary: #FF4B4B;
|
160 |
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
|
161 |
}
|
162 |
+
footer {visibility: hidden;}
|
163 |
+
.gradio-container {background: var(--background-fill-primary);}
|
164 |
+
.title {color: var(--color-primary)!important; font-size:3rem!important; font-weight:700!important; text-align:center; margin:1rem 0; font-family:'Playfair Display',serif;}
|
165 |
+
.subtitle {color:#4A5568!important; font-size:1.2rem!important; text-align:center; margin-bottom:1.5rem; font-style:italic;}
|
166 |
+
.collection-link {text-align:center; margin-bottom:2rem; font-size:1.1rem;}
|
167 |
+
.collection-link a {color:var(--color-primary); text-decoration:underline; transition:color .3s ease;}
|
168 |
+
.collection-link a:hover {color:var(--color-secondary);}
|
169 |
+
.model-description{background:rgba(255,255,255,.8); border-radius:12px; padding:24px; margin:20px 0; box-shadow:0 4px 12px rgba(0,0,0,.05); border-left:5px solid var(--color-primary);}
|
170 |
+
button.primary{background:var(--color-primary)!important; color:#fff!important; transition:all .3s ease;}
|
171 |
+
button:hover{transform:translateY(-2px); box-shadow:0 5px 15px rgba(0,0,0,.1);}
|
172 |
+
.input-container{border-radius:10px; box-shadow:0 2px 8px rgba(0,0,0,.05); background:rgba(255,255,255,.6); padding:20px; margin-bottom:1rem;}
|
173 |
+
.advanced-settings{margin-top:1rem; padding:1rem; border-radius:10px; background:rgba(255,255,255,.6);}
|
174 |
+
.example-region{background:rgba(255,255,255,.5); border-radius:10px; padding:1rem; margin-top:1rem;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
"""
|
176 |
|
177 |
+
# ===== Gradio UI =====
|
178 |
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
179 |
gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
|
|
|
|
|
180 |
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
|
181 |
+
|
|
|
182 |
with gr.Group(elem_classes="model-description"):
|
183 |
gr.HTML("""
|
184 |
<p>
|
|
|
188 |
</p>
|
189 |
""")
|
190 |
|
191 |
+
# ===== ๋ฉ์ธ ์
๋ ฅ =====
|
192 |
+
with gr.Column():
|
193 |
with gr.Row(elem_classes="input-container"):
|
194 |
+
user_prompt = gr.Text(label="Prompt", max_lines=1, value=examples[0])
|
195 |
+
style_select = gr.Radio(label="Style Preset", choices=list(STYLE_PRESETS.keys()), value="None", interactive=True)
|
196 |
+
run_button = gr.Button("Generate", variant="primary")
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
result_image = gr.Image(label="Generated Image")
|
199 |
+
seed_output = gr.Number(label="Seed")
|
200 |
|
201 |
+
# ===== ๊ณ ๊ธ ์ค์ =====
|
202 |
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
|
203 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
205 |
with gr.Row():
|
206 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
207 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
with gr.Row():
|
209 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
|
210 |
+
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=30)
|
211 |
+
lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
+
# ===== ์์ ์์ญ =====
|
214 |
with gr.Group(elem_classes="example-region"):
|
215 |
gr.Markdown("### Examples")
|
216 |
+
gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
# ===== ์ด๋ฒคํธ =====
|
219 |
+
run_button.click(
|
220 |
+
fn=generate_image,
|
|
|
221 |
inputs=[
|
222 |
+
user_prompt,
|
223 |
+
style_select,
|
224 |
seed,
|
225 |
randomize_seed,
|
226 |
width,
|
|
|
229 |
num_inference_steps,
|
230 |
lora_scale,
|
231 |
],
|
232 |
+
outputs=[result_image, seed_output],
|
233 |
)
|
234 |
|
235 |
+
|
236 |
demo.queue()
|
237 |
demo.launch()
|