File size: 9,294 Bytes
4d01430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/kim-korea"  # ํŠน์ • ์ •์น˜์ธ์„ ํ•™์Šตํ•œ LoRA ๋ชจ๋ธ

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

@spaces.GPU(duration=60)
def inference(
    prompt,
    seed=42,
    randomize_seed=True,
    width=1024,
    height=768,
    guidance_scale=3.5,
    num_inference_steps=30,
    lora_scale=1.0,
    progress=None,
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(int(seed))
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, prompt)
    
    # Return just the image and seed
    return image, seed

# ์˜ˆ์‹œ ๋ฌธ๊ตฌ: ํŠน์ • ์ •์น˜์ธ Mr. KIM์˜ ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์„ ๋ฌ˜์‚ฌ

examples = [
    "Mr. KIM holding up a 'Fighting!' banner with both hands, showing patriotic pride and determination for national excellence. ",   
    "Mr. KIM raising both arms in celebration with a triumphant expression, showing victory and hope for the future.",
    "Mr. KIM jogging in a park wearing athletic gear, demonstrating healthy lifestyle and energetic leadership qualities.",  
    "Mr. KIM warmly shaking hands with female citizens in a crowded street, showing genuine care and connection with women voters. ",
    "Mr. KIM at a campaign rally, pointing toward the horizon with an inspiring gesture while female and kids audience members applaud.  ",
    "Mr. KIM participating in a community event, surrounded by enthusiastic female supporters cheering ",
    "Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers. ",
    "Mr. KIM walking through a university campus, discussing education policies with female students and professors. ",    
    "Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression. ",
    "Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
    "Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute. ",
]

# UI๋ฅผ ๋ถ‰์€ ๊ณ„์—ด ๊ทธ๋ผ๋””์—์ด์…˜์œผ๋กœ ๋””์ž์ธ
custom_css = """
:root {
    --color-primary: #8F1A3A; /* ๋ถ‰์€ ํ†ค์˜ ๋ฉ”์ธ ์ปฌ๋Ÿฌ */
    --color-secondary: #FF4B4B; /* ํฌ์ธํŠธ ์ปฌ๋Ÿฌ(๋ฐ์€ ๋นจ๊ฐ•) */
    --background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
}
footer {
    visibility: hidden;
}
.gradio-container {
    background: var(--background-fill-primary);
}
.title {
    color: var(--color-primary) !important;
    font-size: 3rem !important;
    font-weight: 700 !important;
    text-align: center;
    margin: 1rem 0;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.05);
    font-family: 'Playfair Display', serif;
}
.subtitle {
    color: #4A5568 !important;
    font-size: 1.2rem !important;
    text-align: center;
    margin-bottom: 1.5rem;
    font-style: italic;
}
.collection-link {
    text-align: center;
    margin-bottom: 2rem;
    font-size: 1.1rem;
}
.collection-link a {
    color: var(--color-primary);
    text-decoration: underline;
    transition: color 0.3s ease;
}
.collection-link a:hover {
    color: var(--color-secondary);
}
.model-description {
    background-color: rgba(255, 255, 255, 0.8);
    border-radius: 12px;
    padding: 24px;
    margin: 20px 0;
    box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
    border-left: 5px solid var(--color-primary);
}
button.primary {
    background-color: var(--color-primary) !important;
    transition: all 0.3s ease;
    color: #fff !important;
}
button:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.input-container {
    border-radius: 10px;
    box-shadow: 0 2px 8px rgba(0,0,0,0.05);
    background-color: rgba(255, 255, 255, 0.6);
    padding: 20px;
    margin-bottom: 1rem;
}
.advanced-settings {
    margin-top: 1rem;
    padding: 1rem;
    border-radius: 10px;
    background-color: rgba(255, 255, 255, 0.6);
}
.example-region {
    background-color: rgba(255, 255, 255, 0.5);
    border-radius: 10px;
    padding: 1rem;
    margin-top: 1rem;
}
"""

with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
    
    # ์ปฌ๋ ‰์…˜ ๋งํฌ ๋˜๋Š” ์•ˆ๋‚ด๋ฌธ์„ ํ•„์š” ์‹œ ์ˆ˜์ •/์‚ญ์ œ
    gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
    
    # ๋ชจ๋ธ ์„ค๋ช…: ํŠน์ • ์ •์น˜์ธ์— ๋Œ€ํ•œ LoRA ๋ชจ๋ธ์ž„์„ ์–ธ๊ธ‰
    with gr.Group(elem_classes="model-description"):
        gr.HTML("""
        <p>
        ๋ณธ ๋ชจ๋ธ์€ ์—ฐ๊ตฌ ๋ชฉ์ ์œผ๋กœ ํŠน์ •์ธ์˜ ์–ผ๊ตด๊ณผ ์™ธ๋ชจ๋ฅผ ํ•™์Šตํ•œ LoRA ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.<br>
        ๋ชฉ์ ์™ธ์˜ ์šฉ๋„๋กœ ๋ฌด๋‹จ ์‚ฌ์šฉ ์•Š๋„๋ก ์œ ์˜ํ•ด ์ฃผ์„ธ์š”.<br>
        (์˜ˆ์‹œ prompt ์‚ฌ์šฉ ์‹œ ๋ฐ˜๋“œ์‹œ 'kim'์„ ํฌํ•จํ•˜์—ฌ์•ผ ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.)
        </p>
        """)

    # ๋ฉ”์ธ UI
    with gr.Column(elem_id="col-container"):
        with gr.Row(elem_classes="input-container"):
            prompt = gr.Text(
                label="Prompt",
                max_lines=1,
                placeholder="Enter your prompt (add [trigger] at the end)",
                value=examples[0]  # ๊ธฐ๋ณธ ์˜ˆ์‹œ
            )
            run_button = gr.Button("Generate", variant="primary", scale=0)

        result = gr.Image(label="Generated Image")
        seed_output = gr.Number(label="Seed", visible=True)

        with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )
                lora_scale = gr.Slider(
                    label="LoRA scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                )

        with gr.Group(elem_classes="example-region"):
            gr.Markdown("### Examples")
            gr.Examples(
                examples=examples,
                inputs=prompt,
                outputs=None,  # Don't auto-run examples
                fn=None,       # No function to run for examples - just fill the prompt
                cache_examples=False,
            )

    # ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed_output],
    )

demo.queue()
demo.launch()