Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -6,23 +6,13 @@ import os
|
|
6 |
Copied from inference in colab notebook
|
7 |
"""
|
8 |
|
9 |
-
from transformers import
|
10 |
from threading import Thread
|
11 |
|
12 |
# Load model and tokenizer globally to avoid reloading for every request
|
13 |
-
base_model = "google-t5/t5-small"
|
14 |
model_path = "Mat17892/t5small_enfr_opus"
|
15 |
|
16 |
-
|
17 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, legacy=False)
|
18 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, token = os.getenv('huggingface_token'))
|
19 |
-
|
20 |
-
# # Load the base model (e.g., LLaMA)
|
21 |
-
# base_model = AutoModelForSeq2SeqLM.from_pretrained(base_model, token = os.getenv('huggingface_token'))
|
22 |
-
|
23 |
-
# # Load LoRA adapter
|
24 |
-
# from peft import PeftModel
|
25 |
-
# model = PeftModel.from_pretrained(base_model, model_path, token = os.getenv('huggingface_token'))
|
26 |
|
27 |
def respond(
|
28 |
message: str,
|
@@ -32,40 +22,54 @@ def respond(
|
|
32 |
temperature: float,
|
33 |
top_p: float,
|
34 |
):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
|
71 |
"""
|
|
|
6 |
Copied from inference in colab notebook
|
7 |
"""
|
8 |
|
9 |
+
from transformers import TextIteratorStreamer , pipeline
|
10 |
from threading import Thread
|
11 |
|
12 |
# Load model and tokenizer globally to avoid reloading for every request
|
|
|
13 |
model_path = "Mat17892/t5small_enfr_opus"
|
14 |
|
15 |
+
translator = pipeline("translation_xx_to_yy", model=model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def respond(
|
18 |
message: str,
|
|
|
22 |
temperature: float,
|
23 |
top_p: float,
|
24 |
):
|
25 |
+
message = "translate English to French:" + message
|
26 |
+
|
27 |
+
response = translator(message)
|
28 |
+
print(response)
|
29 |
+
yield response
|
30 |
+
|
31 |
+
# def respond(
|
32 |
+
# message: str,
|
33 |
+
# history: list[tuple[str, str]],
|
34 |
+
# system_message: str,
|
35 |
+
# max_tokens: int,
|
36 |
+
# temperature: float,
|
37 |
+
# top_p: float,
|
38 |
+
# ):
|
39 |
+
# # Combine system message and history into a single prompt
|
40 |
+
# messages = [{"role": "system", "content": system_message}]
|
41 |
+
# for val in history:
|
42 |
+
# if val[0]:
|
43 |
+
# messages.append({"role": "user", "content": val[0]})
|
44 |
+
# if val[1]:
|
45 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
46 |
+
# messages.append({"role": "user", "content": message})
|
47 |
|
48 |
+
# # Tokenize the messages
|
49 |
+
# inputs = tokenizer.apply_chat_template(
|
50 |
+
# messages,
|
51 |
+
# tokenize = True,
|
52 |
+
# add_generation_prompt = True, # Must add for generation
|
53 |
+
# return_tensors = "pt",
|
54 |
+
# )
|
55 |
+
# # Generate tokens incrementally
|
56 |
+
# streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
57 |
+
# generation_kwargs = {
|
58 |
+
# "input_ids": inputs,
|
59 |
+
# "max_new_tokens": max_tokens,
|
60 |
+
# "temperature": temperature,
|
61 |
+
# "top_p": top_p,
|
62 |
+
# "do_sample": True,
|
63 |
+
# "streamer": streamer,
|
64 |
+
# }
|
65 |
+
# thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
66 |
+
# thread.start()
|
67 |
|
68 |
+
# # Yield responses as they are generated
|
69 |
+
# response = ""
|
70 |
+
# for token in streamer:
|
71 |
+
# response += token
|
72 |
+
# yield response
|
73 |
|
74 |
|
75 |
"""
|