File size: 5,066 Bytes
d57fe52 4115125 d57fe52 4115125 d57fe52 4115125 d57fe52 bbe50c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import warnings
warnings.filterwarnings("ignore")
import os
import glob
import textwrap
import time
import langchain
### loaders
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
### splits
from langchain.text_splitter import RecursiveCharacterTextSplitter
### prompts
from langchain import PromptTemplate, LLMChain
### vector stores
from langchain.vectorstores import FAISS
### models
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings
### retrievers
from langchain.chains import RetrievalQA
import torch
import transformers
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
BitsAndBytesConfig,
pipeline
)
import gradio as gr
import locale
import time
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
class CFG:
# LLMs
model_name = 'llama2-13b-chat' # wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B
temperature = 0
top_p = 0.95
repetition_penalty = 1.15
# splitting
split_chunk_size = 800
split_overlap = 0
# embeddings
embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'
# similar passages
k = 6
# paths
PDFs_path = './'
Embeddings_path = './faiss-hp-sentence-transformers'
Output_folder = './rag-vectordb'
def get_model(model=CFG.model_name):
print('\nDownloading model: ', model, '\n\n')
model_repo = None
if model == 'llama2-13b-chat':
model_repo = 'daryl149/llama-2-13b-chat-hf'
if model_repo:
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
device_map="auto",
offload_folder="./offload", # Specify offload folder
trust_remote_code=True
)
max_len = 2048
else:
raise ValueError("Model not implemented: " + model)
return tokenizer, model, max_len
def wrap_text_preserve_newlines(text, width=700):
# Split the input text into lines based on newline characters
lines = text.split('\n')
# Wrap each line individually
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
# Join the wrapped lines back together using newline characters
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response):
ans = wrap_text_preserve_newlines(llm_response['result'])
sources_used = ' \n'.join(
[
source.metadata['source'].split('/')[-1][:-4]
+ ' - page: '
+ str(source.metadata['page'])
for source in llm_response['source_documents']
]
)
ans = ans + '\n\nSources: \n' + sources_used
return ans
def llm_ans(query):
start = time.time()
llm_response = qa_chain.invoke(query)
ans = process_llm_response(llm_response)
end = time.time()
time_elapsed = int(round(end - start, 0))
time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
return ans + time_elapsed_str
def predict(message, history):
output = str(llm_ans(message)).replace("\n", "<br/>")
return output
tokenizer, model, max_len = get_model(model = CFG.model_name)
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
pad_token_id=tokenizer.eos_token_id,
max_length=max_len,
temperature=CFG.temperature,
top_p=CFG.top_p,
repetition_penalty=CFG.repetition_penalty
)
### langchain pipeline
llm = HuggingFacePipeline(pipeline = pipe)
loader = DirectoryLoader(
CFG.PDFs_path,
glob="./*.pdf",
loader_cls=PyPDFLoader,
show_progress=True,
use_multithreading=True
)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = CFG.split_chunk_size,
chunk_overlap = CFG.split_overlap
)
texts = text_splitter.split_documents(documents)
vectordb = FAISS.from_documents(
texts,
HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')
)
### persist vector database
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag")
retriever = vectordb.as_retriever(search_kwargs = {"k": CFG.k, "search_type" : "similarity"})
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = "stuff", # map_reduce, map_rerank, stuff, refine
retriever = retriever,
chain_type_kwargs = {"prompt": PROMPT},
return_source_documents = True,
verbose = False
)
prompt_template = """
Don't try to make up an answer, if you don't know just say that you don't know.
Answer in the same language the question was asked.
Use only the following pieces of context to answer the question at the end.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template = prompt_template,
input_variables = ["context", "question"]
)
locale.getpreferredencoding = lambda: "UTF-8"
demo = gr.ChatInterface(
predict,
title = f' Open-Source LLM ({CFG.model_name}) Question Answering'
)
demo.queue()
demo.launch() |