File size: 5,218 Bytes
d57fe52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f391e55
 
 
 
 
 
 
d57fe52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4115125
d57fe52
 
 
 
 
 
 
 
 
 
 
 
4115125
d57fe52
 
 
 
 
 
 
 
4115125
d57fe52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbe50c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import warnings
warnings.filterwarnings("ignore")

import os
import glob
import textwrap
import time

import langchain

### loaders
from langchain.document_loaders import PyPDFLoader, DirectoryLoader

### splits
from langchain.text_splitter import RecursiveCharacterTextSplitter

### prompts
from langchain import PromptTemplate, LLMChain

### vector stores
from langchain.vectorstores import FAISS

### models
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings

### retrievers
from langchain.chains import RetrievalQA

import torch
import transformers
from transformers import (
    AutoTokenizer, AutoModelForCausalLM,
    BitsAndBytesConfig,
    pipeline
)
import gradio as gr
import locale
import time
from langchain.embeddings.huggingface import HuggingFaceEmbeddings

from transformers import logging
import shutil

# Clear transformers cache
logging.set_verbosity_error()
shutil.rmtree('./.cache', ignore_errors=True)

class CFG:
    # LLMs
    model_name = 'llama2-13b-chat' # wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B
    temperature = 0
    top_p = 0.95
    repetition_penalty = 1.15

    # splitting
    split_chunk_size = 800
    split_overlap = 0

    # embeddings
    embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'

    # similar passages
    k = 6

    # paths
    PDFs_path = './'
    Embeddings_path =  './faiss-hp-sentence-transformers'
    Output_folder = './rag-vectordb'
    
def get_model(model=CFG.model_name):
    print('\nDownloading model: ', model, '\n\n')
    model_repo = None

    if model == 'llama2-13b-chat':
        model_repo = 'daryl149/llama-2-13b-chat-hf'

    if model_repo:
        tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
        model = AutoModelForCausalLM.from_pretrained(
            model_repo,
            device_map="auto",
            offload_folder="./offload",  # Specify offload folder
            trust_remote_code=True
        )
        max_len = 2048
    else:
        raise ValueError("Model not implemented: " + model)

    return tokenizer, model, max_len


def wrap_text_preserve_newlines(text, width=700):
    # Split the input text into lines based on newline characters
    lines = text.split('\n')

    # Wrap each line individually
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]

    # Join the wrapped lines back together using newline characters
    wrapped_text = '\n'.join(wrapped_lines)

    return wrapped_text


def process_llm_response(llm_response):
    ans = wrap_text_preserve_newlines(llm_response['result'])

    sources_used = ' \n'.join(
        [
            source.metadata['source'].split('/')[-1][:-4]
            + ' - page: '
            + str(source.metadata['page'])
            for source in llm_response['source_documents']
        ]
    )

    ans = ans + '\n\nSources: \n' + sources_used
    return ans

def llm_ans(query):
    start = time.time()

    llm_response = qa_chain.invoke(query)
    ans = process_llm_response(llm_response)

    end = time.time()

    time_elapsed = int(round(end - start, 0))
    time_elapsed_str = f'\n\nTime elapsed: {time_elapsed} s'
    return ans + time_elapsed_str

def predict(message, history):
     output = str(llm_ans(message)).replace("\n", "<br/>")
     return output




tokenizer, model, max_len = get_model(model = CFG.model_name)

pipe = pipeline(
    task="text-generation",
    model=model,
    tokenizer=tokenizer,
    pad_token_id=tokenizer.eos_token_id,
    max_length=max_len,
    temperature=CFG.temperature,
    top_p=CFG.top_p,
    repetition_penalty=CFG.repetition_penalty
)

### langchain pipeline
llm = HuggingFacePipeline(pipeline = pipe)

loader = DirectoryLoader(
    CFG.PDFs_path,
    glob="./*.pdf",
    loader_cls=PyPDFLoader,
    show_progress=True,
    use_multithreading=True
)

documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = CFG.split_chunk_size,
    chunk_overlap = CFG.split_overlap
)

texts = text_splitter.split_documents(documents)

vectordb = FAISS.from_documents(
    texts,
    HuggingFaceEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')
)

### persist vector database
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag")

retriever = vectordb.as_retriever(search_kwargs = {"k": CFG.k, "search_type" : "similarity"})

qa_chain = RetrievalQA.from_chain_type(
    llm = llm,
    chain_type = "stuff", # map_reduce, map_rerank, stuff, refine
    retriever = retriever,
    chain_type_kwargs = {"prompt": PROMPT},
    return_source_documents = True,
    verbose = False
)

prompt_template = """
Don't try to make up an answer, if you don't know just say that you don't know.
Answer in the same language the question was asked.
Use only the following pieces of context to answer the question at the end.

{context}

Question: {question}
Answer:"""


PROMPT = PromptTemplate(
    template = prompt_template,
    input_variables = ["context", "question"]
)


locale.getpreferredencoding = lambda: "UTF-8"

demo = gr.ChatInterface(
     predict,
     title = f' Open-Source LLM ({CFG.model_name}) Question Answering'
 )

demo.queue()
demo.launch()