TextTrail / app.py
HemaMeena's picture
Update app.py
c793415 verified
raw
history blame
4.68 kB
import warnings
warnings.filterwarnings("ignore")
import os
import glob
import textwrap
import time
import langchain
# Loaders
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
# Splits
from langchain.text_splitter import RecursiveCharacterTextSplitter
# Prompts
from langchain import PromptTemplate, LLMChain
# Vector stores
from langchain.vectorstores import FAISS
# Models
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings
# Retrievers
from langchain.chains import RetrievalQA
import torch
import transformers
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
pipeline
)
import gradio as gr
import locale
import shutil
# Clear transformers cache
transformers.logging.set_verbosity_error()
shutil.rmtree('./.cache', ignore_errors=True)
class CFG:
# LLMs configuration
model_name = 'llama2-13b-chat' # Options: wizardlm, llama2-7b-chat, llama2-13b-chat, mistral-7B
temperature = 0
top_p = 0.95
repetition_penalty = 1.15
# Text splitting configuration
split_chunk_size = 800
split_overlap = 0
# Embeddings configuration
embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'
# Similar passages configuration
k = 6
# File paths configuration
PDFs_path = './'
Embeddings_path = './faiss-hp-sentence-transformers'
Output_folder = './rag-vectordb'
def get_model(model=CFG.model_name):
print('\nDownloading model: ', model, '\n\n')
model_repo = 'daryl149/llama-2-13b-chat-hf' if model == 'llama2-13b-chat' else None
if not model_repo:
raise ValueError("Model not implemented: " + model)
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
device_map="auto",
offload_folder="./offload",
trust_remote_code=True
)
max_len = 2048
return tokenizer, model, max_len
def wrap_text_preserve_newlines(text, width=700):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
return '\n'.join(wrapped_lines)
def process_llm_response(llm_response):
ans = wrap_text_preserve_newlines(llm_response['result'])
sources_used = ' \n'.join(
[
f"{source.metadata['source'].split('/')[-1][:-4]} - page: {source.metadata['page']}"
for source in llm_response['source_documents']
]
)
return ans + '\n\nSources: \n' + sources_used
def llm_ans(query):
start = time.time()
llm_response = qa_chain.invoke(query)
ans = process_llm_response(llm_response)
end = time.time()
time_elapsed_str = f'\n\nTime elapsed: {int(round(end - start))} s'
return ans + time_elapsed_str
def predict(message, history):
output = str(llm_ans(message)).replace("\n", "<br/>")
return output
tokenizer, model, max_len = get_model(model=CFG.model_name)
pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
pad_token_id=tokenizer.eos_token_id,
max_length=max_len,
temperature=CFG.temperature,
top_p=CFG.top_p,
repetition_penalty=CFG.repetition_penalty
)
# LangChain pipeline setup
llm = HuggingFacePipeline(pipeline=pipe)
loader = DirectoryLoader(
CFG.PDFs_path,
glob="./*.pdf",
loader_cls=PyPDFLoader,
show_progress=True,
)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=CFG.split_chunk_size,
chunk_overlap=CFG.split_overlap
)
texts = text_splitter.split_documents(documents)
vectordb = FAISS.from_documents(
texts,
HuggingFaceInstructEmbeddings(model_name='sentence-transformers/all-mpnet-base-v2')
)
# Persist vector database
vectordb.save_local(f"{CFG.Output_folder}/faiss_index_rag")
retriever = vectordb.as_retriever(search_kwargs={"k": CFG.k})
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff", # Options: map_reduce, map_rerank, stuff, refine
retriever=retriever,
)
prompt_template = """
Don't try to make up an answer; if you don't know just say that you don't know.
Answer in the same language the question was asked.
Use only the following pieces of context to answer the question at the end.
{context}
Question: {question}
Answer:"""
PROMPT = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
locale.getpreferredencoding = lambda: "UTF-8"
demo = gr.ChatInterface(
fn=predict,
title=f'Open-Source LLM ({CFG.model_name}) Question Answering'
)
demo.queue()
demo.launch()