File size: 5,173 Bytes
50618c8 6d77b63 50618c8 6d77b63 50618c8 6d77b63 50618c8 6d77b63 50618c8 6d77b63 50618c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
# Paths
train_dir = 'Tomato_Plant_Disease'
# Image Data Generator with Augmentation for training
datagen = ImageDataGenerator(
rescale=1./255, # Normalize pixel values
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
validation_split=0.2 # Use 20% for validation
)
# Training and Validation Data
train_generator = datagen.flow_from_directory(
train_dir,
target_size=(128, 128),
batch_size=32,
class_mode='binary', # 'binary' since it's a binary classification
subset='training'
)
validation_generator = datagen.flow_from_directory(
train_dir,
target_size=(128, 128),
batch_size=32,
class_mode='binary',
subset='validation'
)
# Define the CNN model
model = Sequential()
# 1st Convolution Layer
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 2nd Convolution Layer
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 3rd Convolution Layer
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# Flatten the output
model.add(Flatten())
# Fully connected layer
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5)) # Dropout to prevent overfitting
# Output layer
model.add(Dense(1, activation='sigmoid')) # Binary classification, hence 'sigmoid'
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Summary
model.summary()
history = model.fit(
train_generator,
steps_per_epoch=train_generator.samples // 32,
validation_data=validation_generator,
validation_steps=validation_generator.samples // 32,
epochs=20 # You can adjust based on performance
)
# Plot training & validation accuracy values
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
# Plot training & validation loss values
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
# Assuming you have a test directory
test_dir = 'Tomato_Plant_Disease' # Path to your test dataset
# Create a test data generator (without augmentation)
test_datagen = ImageDataGenerator(rescale=1./255)
# Load test data
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(128, 128),
batch_size=32,
class_mode='binary'
)
test_loss, test_acc = model.evaluate(test_generator, steps=test_generator.samples // 32)
print(f"Test Accuracy: {test_acc}")
model.save('tomato_disease_detection_model.h5')
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
# Load the model
model = load_model('tomato_disease_detection_model.h5')
def predict_disease(img_path):
# Load and preprocess the image
img = Image.open(img_path)
img = img.resize((128, 128)) # Resize image to match model input size
img = np.array(img) # Convert to array
img = img / 255.0 # Normalize pixel values
img = np.expand_dims(img, axis=0) # Add batch dimension
# Make prediction
prediction = model.predict(img)
# Determine if infected or healthy
if prediction[0][0] > 0.5:
print("The plant is healthy.")
else:
print("The plant is infected.")
# Example usage:
img_path = 'Tomato_Plant_Disease/0/0045ba29-ed1b-43b4-afde-719cc7adefdb___GCREC_Bact.Sp 6254.JPG'
predict_disease(img_path)
import gradio as gr
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
# Load the pre-trained model
model = load_model('tomato_disease_detection_model.h5')
# Prediction function to be used in Gradio
def predict_disease(img):
# Preprocess the image
img = img.resize((128, 128)) # Resize to match model input size
img = np.array(img) # Convert to array
img = img / 255.0 # Normalize pixel values
img = np.expand_dims(img, axis=0) # Add batch dimension
# Make prediction
prediction = model.predict(img)
# Determine if infected or healthy
if prediction[0][0] > 0.5:
return "The plant is healthy."
else:
return "The plant is infected."
# Gradio interface
interface = gr.Interface(
fn=predict_disease,
inputs=gr.Image(type="pil"), # Corrected input without 'shape' argument
outputs=gr.Textbox(), # Output component
title="Tomato Plant Disease Detection",
description="Upload an image of a tomato leaf to determine if it's infected or healthy."
)
# Launch the Gradio interface
interface.launch() |