File size: 5,173 Bytes
50618c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d77b63
50618c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d77b63
50618c8
 
 
 
 
 
 
6d77b63
50618c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d77b63
50618c8
 
 
 
 
 
 
 
6d77b63
50618c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt

# Paths
train_dir = 'Tomato_Plant_Disease'

# Image Data Generator with Augmentation for training
datagen = ImageDataGenerator(
    rescale=1./255,               # Normalize pixel values
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    validation_split=0.2          # Use 20% for validation
)

# Training and Validation Data
train_generator = datagen.flow_from_directory(
    train_dir,
    target_size=(128, 128),
    batch_size=32,
    class_mode='binary',  # 'binary' since it's a binary classification
    subset='training'
)

validation_generator = datagen.flow_from_directory(
    train_dir,
    target_size=(128, 128),
    batch_size=32,
    class_mode='binary',
    subset='validation'
)

# Define the CNN model
model = Sequential()

# 1st Convolution Layer
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 3)))
model.add(MaxPooling2D(pool_size=(2, 2)))

# 2nd Convolution Layer
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

# 3rd Convolution Layer
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

# Flatten the output
model.add(Flatten())

# Fully connected layer
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))  # Dropout to prevent overfitting

# Output layer
model.add(Dense(1, activation='sigmoid'))  # Binary classification, hence 'sigmoid'

# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# Summary
model.summary()

history = model.fit(
    train_generator,
    steps_per_epoch=train_generator.samples // 32,
    validation_data=validation_generator,
    validation_steps=validation_generator.samples // 32,
    epochs=20  # You can adjust based on performance
)

# Plot training & validation accuracy values
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()

# Plot training & validation loss values
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()

# Assuming you have a test directory
test_dir = 'Tomato_Plant_Disease'  # Path to your test dataset

# Create a test data generator (without augmentation)
test_datagen = ImageDataGenerator(rescale=1./255)

# Load test data
test_generator = test_datagen.flow_from_directory(
    test_dir,
    target_size=(128, 128),
    batch_size=32,
    class_mode='binary'
)

test_loss, test_acc = model.evaluate(test_generator, steps=test_generator.samples // 32)
print(f"Test Accuracy: {test_acc}")

model.save('tomato_disease_detection_model.h5')

from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image

# Load the model
model = load_model('tomato_disease_detection_model.h5')

def predict_disease(img_path):
    # Load and preprocess the image
    img = Image.open(img_path)
    img = img.resize((128, 128))  # Resize image to match model input size
    img = np.array(img)  # Convert to array
    img = img / 255.0    # Normalize pixel values
    img = np.expand_dims(img, axis=0)  # Add batch dimension

    # Make prediction
    prediction = model.predict(img)

    # Determine if infected or healthy
    if prediction[0][0] > 0.5:
        print("The plant is healthy.")
    else:
        print("The plant is infected.")

# Example usage:
img_path = 'Tomato_Plant_Disease/0/0045ba29-ed1b-43b4-afde-719cc7adefdb___GCREC_Bact.Sp 6254.JPG'
predict_disease(img_path)

import gradio as gr
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np

# Load the pre-trained model
model = load_model('tomato_disease_detection_model.h5')

# Prediction function to be used in Gradio
def predict_disease(img):
    # Preprocess the image
    img = img.resize((128, 128))  # Resize to match model input size
    img = np.array(img)  # Convert to array
    img = img / 255.0  # Normalize pixel values
    img = np.expand_dims(img, axis=0)  # Add batch dimension

    # Make prediction
    prediction = model.predict(img)

    # Determine if infected or healthy
    if prediction[0][0] > 0.5:
        return "The plant is healthy."
    else:
        return "The plant is infected."

# Gradio interface
interface = gr.Interface(
    fn=predict_disease,
    inputs=gr.Image(type="pil"),  # Corrected input without 'shape' argument
    outputs=gr.Textbox(),  # Output component
    title="Tomato Plant Disease Detection",
    description="Upload an image of a tomato leaf to determine if it's infected or healthy."
)

# Launch the Gradio interface
interface.launch()