Spaces:
Running
Running
Create api.py
Browse files
api.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import soundfile as sf
|
2 |
+
import torch
|
3 |
+
import tqdm
|
4 |
+
from cached_path import cached_path
|
5 |
+
|
6 |
+
from model import DiT, UNetT
|
7 |
+
from model.utils import save_spectrogram
|
8 |
+
|
9 |
+
from model.utils_infer import load_vocoder, load_model, infer_process, remove_silence_for_generated_wav
|
10 |
+
from model.utils import seed_everything
|
11 |
+
import random
|
12 |
+
import sys
|
13 |
+
|
14 |
+
|
15 |
+
class F5TTS:
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
model_type="F5-TTS",
|
19 |
+
ckpt_file="",
|
20 |
+
vocab_file="",
|
21 |
+
ode_method="euler",
|
22 |
+
use_ema=True,
|
23 |
+
local_path=None,
|
24 |
+
device=None,
|
25 |
+
):
|
26 |
+
# Initialize parameters
|
27 |
+
self.final_wave = None
|
28 |
+
self.target_sample_rate = 24000
|
29 |
+
self.n_mel_channels = 100
|
30 |
+
self.hop_length = 256
|
31 |
+
self.target_rms = 0.1
|
32 |
+
self.seed = -1
|
33 |
+
|
34 |
+
# Set device
|
35 |
+
self.device = device or (
|
36 |
+
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
37 |
+
)
|
38 |
+
|
39 |
+
# Load models
|
40 |
+
self.load_vocoder_model(local_path)
|
41 |
+
self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
|
42 |
+
|
43 |
+
def load_vocoder_model(self, local_path):
|
44 |
+
self.vocos = load_vocoder(local_path is not None, local_path, self.device)
|
45 |
+
|
46 |
+
def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
|
47 |
+
if model_type == "F5-TTS":
|
48 |
+
if not ckpt_file:
|
49 |
+
ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
|
50 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
51 |
+
model_cls = DiT
|
52 |
+
elif model_type == "E2-TTS":
|
53 |
+
if not ckpt_file:
|
54 |
+
ckpt_file = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
55 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
56 |
+
model_cls = UNetT
|
57 |
+
else:
|
58 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
59 |
+
|
60 |
+
self.ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file, ode_method, use_ema, self.device)
|
61 |
+
|
62 |
+
def export_wav(self, wav, file_wave, remove_silence=False):
|
63 |
+
sf.write(file_wave, wav, self.target_sample_rate)
|
64 |
+
|
65 |
+
if remove_silence:
|
66 |
+
remove_silence_for_generated_wav(file_wave)
|
67 |
+
|
68 |
+
def export_spectrogram(self, spect, file_spect):
|
69 |
+
save_spectrogram(spect, file_spect)
|
70 |
+
|
71 |
+
def infer(
|
72 |
+
self,
|
73 |
+
ref_file,
|
74 |
+
ref_text,
|
75 |
+
gen_text,
|
76 |
+
show_info=print,
|
77 |
+
progress=tqdm,
|
78 |
+
target_rms=0.1,
|
79 |
+
cross_fade_duration=0.15,
|
80 |
+
sway_sampling_coef=-1,
|
81 |
+
cfg_strength=2,
|
82 |
+
nfe_step=32,
|
83 |
+
speed=1.0,
|
84 |
+
fix_duration=None,
|
85 |
+
remove_silence=False,
|
86 |
+
file_wave=None,
|
87 |
+
file_spect=None,
|
88 |
+
seed=-1,
|
89 |
+
):
|
90 |
+
if seed == -1:
|
91 |
+
seed = random.randint(0, sys.maxsize)
|
92 |
+
seed_everything(seed)
|
93 |
+
self.seed = seed
|
94 |
+
wav, sr, spect = infer_process(
|
95 |
+
ref_file,
|
96 |
+
ref_text,
|
97 |
+
gen_text,
|
98 |
+
self.ema_model,
|
99 |
+
show_info=show_info,
|
100 |
+
progress=progress,
|
101 |
+
target_rms=target_rms,
|
102 |
+
cross_fade_duration=cross_fade_duration,
|
103 |
+
nfe_step=nfe_step,
|
104 |
+
cfg_strength=cfg_strength,
|
105 |
+
sway_sampling_coef=sway_sampling_coef,
|
106 |
+
speed=speed,
|
107 |
+
fix_duration=fix_duration,
|
108 |
+
device=self.device,
|
109 |
+
)
|
110 |
+
|
111 |
+
if file_wave is not None:
|
112 |
+
self.export_wav(wav, file_wave, remove_silence)
|
113 |
+
|
114 |
+
if file_spect is not None:
|
115 |
+
self.export_spectrogram(spect, file_spect)
|
116 |
+
|
117 |
+
return wav, sr, spect
|
118 |
+
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
f5tts = F5TTS()
|
122 |
+
|
123 |
+
wav, sr, spect = f5tts.infer(
|
124 |
+
ref_file="tests/ref_audio/test_en_1_ref_short.wav",
|
125 |
+
ref_text="some call me nature, others call me mother nature.",
|
126 |
+
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
127 |
+
file_wave="tests/out.wav",
|
128 |
+
file_spect="tests/out.png",
|
129 |
+
seed=-1, # random seed = -1
|
130 |
+
)
|
131 |
+
|
132 |
+
print("seed :", f5tts.seed)
|