Spaces:
Runtime error
Runtime error
File size: 2,213 Bytes
1f204d5 e1f8860 1f204d5 fba0c3b 1f204d5 c394a78 1f204d5 c394a78 1f204d5 c394a78 5149cfb 52e4ef5 1f204d5 c394a78 0ce0895 c394a78 1f204d5 c394a78 1f204d5 4b1ac93 c394a78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import torch
from transformers import pipeline
import gradio as gr
MODEL_NAME = "JackismyShephard/whisper-tiny-finetuned-minds14"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
return_timestamps='word'
)
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
def format_timestamp(
seconds: float, always_include_hours: bool = False, decimal_marker: str = "."
):
if seconds is not None:
milliseconds = round(seconds * 1000.0)
hours = milliseconds // 3_600_000
milliseconds -= hours * 3_600_000
minutes = milliseconds // 60_000
milliseconds -= minutes * 60_000
seconds = milliseconds // 1_000
milliseconds -= seconds * 1_000
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
else:
# we have a malformed timestamp so just return it as is
return seconds
def transcribe(file, return_timestamps):
outputs = pipe(
file,
batch_size=BATCH_SIZE,
return_timestamps=return_timestamps,
)
text = outputs["text"]
if return_timestamps:
timestamps = outputs["chunks"]
timestamps = [
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
for chunk in timestamps
]
text = "\n".join(str(feature) for feature in timestamps)
return text
demo = gr.Interface(
fn=transcribe,
inputs=[
#gr.Audio(label="Audio", type="filepath"),
gr.Audio(sources=["upload", "microphone"], type="filepath"),
gr.Checkbox(label="Return timestamps"),
],
outputs=gr.Textbox(show_copy_button=True, label="Text"),
title="Automatic Speech Recognition",
examples=[
["examples/example.wav", False],
["examples/example.wav", True],
],
cache_examples=True,
allow_flagging="never",
)
demo.launch()
|