adding translate_dataset.ipynb
#1
by
greenpotatoshow
- opened
- translate_dataset.ipynb +326 -0
translate_dataset.ipynb
ADDED
@@ -0,0 +1,326 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"base_uri": "https://localhost:8080/"
|
9 |
+
},
|
10 |
+
"execution": {
|
11 |
+
"iopub.execute_input": "2025-04-09T09:04:50.582374Z",
|
12 |
+
"iopub.status.busy": "2025-04-09T09:04:50.581446Z",
|
13 |
+
"iopub.status.idle": "2025-04-09T09:04:54.831276Z",
|
14 |
+
"shell.execute_reply": "2025-04-09T09:04:54.829937Z",
|
15 |
+
"shell.execute_reply.started": "2025-04-09T09:04:50.582330Z"
|
16 |
+
},
|
17 |
+
"id": "POBbLwluCMeK",
|
18 |
+
"outputId": "9589beb5-86c8-4b44-d9bd-cc3316c838c9"
|
19 |
+
},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"%pip install kagglehub\n",
|
23 |
+
"%pip install sacremoses"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"metadata": {
|
30 |
+
"execution": {
|
31 |
+
"iopub.execute_input": "2025-04-09T09:04:54.834196Z",
|
32 |
+
"iopub.status.busy": "2025-04-09T09:04:54.833289Z",
|
33 |
+
"iopub.status.idle": "2025-04-09T09:04:58.835896Z",
|
34 |
+
"shell.execute_reply": "2025-04-09T09:04:58.834641Z",
|
35 |
+
"shell.execute_reply.started": "2025-04-09T09:04:54.834135Z"
|
36 |
+
},
|
37 |
+
"id": "BwJ36n6vZUB2",
|
38 |
+
"tags": []
|
39 |
+
},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"from pathlib import Path\n",
|
43 |
+
"import os\n",
|
44 |
+
"from pathlib import Path\n",
|
45 |
+
"from transformers import pipeline\n",
|
46 |
+
"from tqdm import tqdm\n",
|
47 |
+
"import pandas as pd\n",
|
48 |
+
"import torch\n",
|
49 |
+
"import kagglehub\n",
|
50 |
+
"import signal"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"metadata": {
|
57 |
+
"execution": {
|
58 |
+
"iopub.execute_input": "2025-04-09T09:04:58.838507Z",
|
59 |
+
"iopub.status.busy": "2025-04-09T09:04:58.837160Z",
|
60 |
+
"iopub.status.idle": "2025-04-09T09:04:58.856737Z",
|
61 |
+
"shell.execute_reply": "2025-04-09T09:04:58.855801Z",
|
62 |
+
"shell.execute_reply.started": "2025-04-09T09:04:58.838466Z"
|
63 |
+
},
|
64 |
+
"id": "cOIT5Hu5FdT2"
|
65 |
+
},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"class GracefulExiter:\n",
|
69 |
+
" # to catch keyboard interrupts\n",
|
70 |
+
" def __init__(self):\n",
|
71 |
+
" self.should_exit = False\n",
|
72 |
+
" signal.signal(signal.SIGINT, self.exit_gracefully)\n",
|
73 |
+
" signal.signal(signal.SIGTERM, self.exit_gracefully)\n",
|
74 |
+
"\n",
|
75 |
+
" def exit_gracefully(self, signum, frame):\n",
|
76 |
+
" print(\n",
|
77 |
+
" \"\\nReceived interrupt signal. Finishing current work and saving progress...\"\n",
|
78 |
+
" )\n",
|
79 |
+
" self.should_exit = True"
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "code",
|
84 |
+
"execution_count": null,
|
85 |
+
"metadata": {
|
86 |
+
"execution": {
|
87 |
+
"iopub.execute_input": "2025-04-09T09:04:58.859897Z",
|
88 |
+
"iopub.status.busy": "2025-04-09T09:04:58.858860Z",
|
89 |
+
"iopub.status.idle": "2025-04-09T09:04:58.886712Z",
|
90 |
+
"shell.execute_reply": "2025-04-09T09:04:58.885792Z",
|
91 |
+
"shell.execute_reply.started": "2025-04-09T09:04:58.859858Z"
|
92 |
+
},
|
93 |
+
"id": "Fg9c5cFZZyoG"
|
94 |
+
},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"def get_dataset():\n",
|
98 |
+
" # Download latest version\n",
|
99 |
+
" path = kagglehub.dataset_download(\"Cornell-University/arxiv\")\n",
|
100 |
+
"\n",
|
101 |
+
" print(\"Path to dataset files:\", path)\n",
|
102 |
+
"\n",
|
103 |
+
" file_name = os.listdir(path)[0]\n",
|
104 |
+
" path_to_dataset = Path(path) / file_name\n",
|
105 |
+
" data = pd.read_json(path_to_dataset, lines=True)\n",
|
106 |
+
"\n",
|
107 |
+
" # leave only the first common category\n",
|
108 |
+
" data[\"categories\"] = [category.split()[0] for category in data[\"categories\"]]\n",
|
109 |
+
" data[\"categories\"] = [category.split(\".\")[0] for category in data[\"categories\"]]\n",
|
110 |
+
"\n",
|
111 |
+
" # sort data in a proper way\n",
|
112 |
+
" counts = data.groupby(by=\"categories\")[\"title\"].count().sort_index()\n",
|
113 |
+
" unique_categories = counts.index.to_list()\n",
|
114 |
+
"\n",
|
115 |
+
" groups_same_category = {\n",
|
116 |
+
" category: data[data[\"categories\"] == category] for category in unique_categories\n",
|
117 |
+
" }\n",
|
118 |
+
"\n",
|
119 |
+
" max_group_size = counts.max()\n",
|
120 |
+
"\n",
|
121 |
+
" new_df = []\n",
|
122 |
+
"\n",
|
123 |
+
" for i in range(max_group_size):\n",
|
124 |
+
" for category in unique_categories:\n",
|
125 |
+
" if i < len(groups_same_category[category]):\n",
|
126 |
+
" new_df.append(groups_same_category[category].iloc[i])\n",
|
127 |
+
"\n",
|
128 |
+
" result_df = pd.DataFrame(new_df).reset_index()\n",
|
129 |
+
" return result_df"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "code",
|
134 |
+
"execution_count": null,
|
135 |
+
"metadata": {
|
136 |
+
"execution": {
|
137 |
+
"iopub.execute_input": "2025-04-09T09:04:58.889441Z",
|
138 |
+
"iopub.status.busy": "2025-04-09T09:04:58.887873Z",
|
139 |
+
"iopub.status.idle": "2025-04-09T09:04:58.910755Z",
|
140 |
+
"shell.execute_reply": "2025-04-09T09:04:58.909796Z",
|
141 |
+
"shell.execute_reply.started": "2025-04-09T09:04:58.889390Z"
|
142 |
+
},
|
143 |
+
"id": "RqdjPXAk1dyg",
|
144 |
+
"tags": []
|
145 |
+
},
|
146 |
+
"outputs": [],
|
147 |
+
"source": [
|
148 |
+
"def translate_dataset(\n",
|
149 |
+
" starting_from=0,\n",
|
150 |
+
" count=1000,\n",
|
151 |
+
" batch_size=16,\n",
|
152 |
+
" save_interval=64,\n",
|
153 |
+
" dataset=None,\n",
|
154 |
+
" use_google_drive=False,\n",
|
155 |
+
"):\n",
|
156 |
+
" # if dataset is given the function will use it\n",
|
157 |
+
" # else it will download dataset\n",
|
158 |
+
"\n",
|
159 |
+
" # for colab to save files in your google drive\n",
|
160 |
+
" # just in case colab ending the session before you could save all the files\n",
|
161 |
+
"\n",
|
162 |
+
" # if use_google_drive:\n",
|
163 |
+
" # from google.colab import drive\n",
|
164 |
+
" # drive.mount('/content/drive')\n",
|
165 |
+
" # target_folder = Path(\"/content/drive/MyDrive/arxiv_translations\")\n",
|
166 |
+
" # else:\n",
|
167 |
+
" # target_folder = Path(\"russian_dataset\")\n",
|
168 |
+
" # target_folder.mkdir(exist_ok=True)\n",
|
169 |
+
"\n",
|
170 |
+
" target_folder = Path(\"dataset_parts\")\n",
|
171 |
+
" target_folder.mkdir(exist_ok=True)\n",
|
172 |
+
"\n",
|
173 |
+
" # to catch keyboard interrupts\n",
|
174 |
+
" exiter = GracefulExiter()\n",
|
175 |
+
"\n",
|
176 |
+
" result_df = dataset.copy()\n",
|
177 |
+
"\n",
|
178 |
+
" # download the model\n",
|
179 |
+
" translator = pipeline(\n",
|
180 |
+
" \"translation_en_to_ru\",\n",
|
181 |
+
" model=\"Helsinki-NLP/opus-mt-en-ru\",\n",
|
182 |
+
" device=\"cuda\" if torch.cuda.is_available() else \"cpu\",\n",
|
183 |
+
" torch_dtype=\"auto\",\n",
|
184 |
+
" )\n",
|
185 |
+
"\n",
|
186 |
+
" def clean_text(text, max_length=512):\n",
|
187 |
+
" if pd.isna(text) or text.strip() == \"\":\n",
|
188 |
+
" return \"[EMPTY]\"\n",
|
189 |
+
" if len(text) > max_length:\n",
|
190 |
+
" text = text[:max_length]\n",
|
191 |
+
" return str(text).strip()\n",
|
192 |
+
"\n",
|
193 |
+
" def translate_batch(texts, batch_size=batch_size, max_length=512):\n",
|
194 |
+
" results = []\n",
|
195 |
+
" texts = [clean_text(text, max_length) for text in texts]\n",
|
196 |
+
" try:\n",
|
197 |
+
" for out in tqdm(\n",
|
198 |
+
" translator(texts, max_length=max_length, batch_size=batch_size),\n",
|
199 |
+
" total=len(texts),\n",
|
200 |
+
" desc=\"Translating...\",\n",
|
201 |
+
" ):\n",
|
202 |
+
" results.append(out)\n",
|
203 |
+
" except Exception as e:\n",
|
204 |
+
" print(f\"Error: {e}\")\n",
|
205 |
+
" return results\n",
|
206 |
+
"\n",
|
207 |
+
" # take the necessary interval\n",
|
208 |
+
" part_df = result_df.iloc[starting_from : starting_from + count]\n",
|
209 |
+
"\n",
|
210 |
+
" russian_data = pd.DataFrame(columns=[\"authors\", \"title\", \"abstract\", \"categories\"])\n",
|
211 |
+
"\n",
|
212 |
+
" previous_temp_file = None\n",
|
213 |
+
"\n",
|
214 |
+
" for chunk_start in range(0, count, save_interval):\n",
|
215 |
+
" if exiter.should_exit:\n",
|
216 |
+
" break\n",
|
217 |
+
"\n",
|
218 |
+
" chunk_end = min(chunk_start + save_interval, count)\n",
|
219 |
+
" print(f\"Processing records {chunk_start} to {chunk_end}...\")\n",
|
220 |
+
"\n",
|
221 |
+
" chunk_df = part_df.iloc[chunk_start:chunk_end]\n",
|
222 |
+
"\n",
|
223 |
+
" translated_chunk = {\n",
|
224 |
+
" \"authors\": translate_batch(chunk_df[\"authors\"].tolist()),\n",
|
225 |
+
" \"title\": translate_batch(chunk_df[\"title\"].tolist()),\n",
|
226 |
+
" \"abstract\": translate_batch(chunk_df[\"abstract\"].tolist()),\n",
|
227 |
+
" \"categories\": chunk_df[\"categories\"].tolist(),\n",
|
228 |
+
" }\n",
|
229 |
+
" if exiter.should_exit:\n",
|
230 |
+
" print(\"Interrupt detected. Saving partial results...\")\n",
|
231 |
+
" break\n",
|
232 |
+
" chunk_df_translated = pd.DataFrame(translated_chunk)\n",
|
233 |
+
" russian_data = pd.concat([russian_data, chunk_df_translated], ignore_index=True)\n",
|
234 |
+
"\n",
|
235 |
+
" # save temperory results\n",
|
236 |
+
" temp_filename = (\n",
|
237 |
+
" target_folder / f\"{starting_from}_{starting_from + chunk_end}_temp.csv\"\n",
|
238 |
+
" )\n",
|
239 |
+
" russian_data.to_csv(temp_filename, index=False)\n",
|
240 |
+
" print(f\"Saved temporary results to {temp_filename}\")\n",
|
241 |
+
"\n",
|
242 |
+
" # removing previous temporary file\n",
|
243 |
+
" if previous_temp_file is not None and previous_temp_file.exists():\n",
|
244 |
+
" previous_temp_file.unlink()\n",
|
245 |
+
" print(f\"Removed previous temporary file: {previous_temp_file}\")\n",
|
246 |
+
"\n",
|
247 |
+
" previous_temp_file = temp_filename\n",
|
248 |
+
"\n",
|
249 |
+
" if exiter.should_exit:\n",
|
250 |
+
" # keyboard interrupt\n",
|
251 |
+
" final_filename = (\n",
|
252 |
+
" target_folder\n",
|
253 |
+
" / f\"{starting_from}_{starting_from + len(russian_data)}_partial.csv\"\n",
|
254 |
+
" )\n",
|
255 |
+
" print(f\"\\nProcess interrupted. Saving partial results to {final_filename}\")\n",
|
256 |
+
" else:\n",
|
257 |
+
" final_filename = target_folder / f\"{starting_from}_{count}_final.csv\"\n",
|
258 |
+
" print(f\"\\nProcessing completed. Saving final results to {final_filename}\")\n",
|
259 |
+
"\n",
|
260 |
+
" russian_data.to_csv(final_filename, index=False)\n",
|
261 |
+
"\n",
|
262 |
+
" # remove temperorary files\n",
|
263 |
+
" if not exiter.should_exit:\n",
|
264 |
+
" for temp_file in target_folder.glob(\"*_temp.csv\"):\n",
|
265 |
+
" temp_file.unlink()\n",
|
266 |
+
" print(\"Temporary files removed.\")"
|
267 |
+
]
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"cell_type": "code",
|
271 |
+
"execution_count": null,
|
272 |
+
"metadata": {
|
273 |
+
"execution": {
|
274 |
+
"iopub.execute_input": "2025-04-09T09:04:58.913113Z",
|
275 |
+
"iopub.status.busy": "2025-04-09T09:04:58.911808Z"
|
276 |
+
}
|
277 |
+
},
|
278 |
+
"outputs": [],
|
279 |
+
"source": [
|
280 |
+
"df = get_dataset()"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": null,
|
286 |
+
"metadata": {
|
287 |
+
"colab": {
|
288 |
+
"base_uri": "https://localhost:8080/"
|
289 |
+
},
|
290 |
+
"id": "mlO-3KoY8uT6",
|
291 |
+
"outputId": "bb555bc7-6ad4-43ef-d096-06ef01b07525",
|
292 |
+
"tags": []
|
293 |
+
},
|
294 |
+
"outputs": [],
|
295 |
+
"source": [
|
296 |
+
"translate_dataset(\n",
|
297 |
+
" starting_from=0, count=50_000, dataset=df, batch_size=128, save_interval=512\n",
|
298 |
+
")"
|
299 |
+
]
|
300 |
+
}
|
301 |
+
],
|
302 |
+
"metadata": {
|
303 |
+
"colab": {
|
304 |
+
"provenance": []
|
305 |
+
},
|
306 |
+
"kernelspec": {
|
307 |
+
"display_name": "DataSphere Kernel",
|
308 |
+
"language": "python",
|
309 |
+
"name": "python3"
|
310 |
+
},
|
311 |
+
"language_info": {
|
312 |
+
"codemirror_mode": {
|
313 |
+
"name": "ipython",
|
314 |
+
"version": 3
|
315 |
+
},
|
316 |
+
"file_extension": ".py",
|
317 |
+
"mimetype": "text/x-python",
|
318 |
+
"name": "python",
|
319 |
+
"nbconvert_exporter": "python",
|
320 |
+
"pygments_lexer": "ipython3",
|
321 |
+
"version": "3.10.12"
|
322 |
+
}
|
323 |
+
},
|
324 |
+
"nbformat": 4,
|
325 |
+
"nbformat_minor": 4
|
326 |
+
}
|