Spaces:
Running
on
T4
Running
on
T4
File size: 1,487 Bytes
561c629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# -*- coding: utf-8 -*-
import sys
import os
import torch
# Import important files
root_path = os.path.abspath('.')
sys.path.append(root_path)
from architecture.cunet import UNet_Full # This place need to adjust for different models
from train_code.train_master import train_master
# Mixed precision training
scaler = torch.cuda.amp.GradScaler()
class train_cunet(train_master):
def __init__(self, options, args) -> None:
super().__init__(options, args, "cunet") # Pass a model name unique code
def loss_init(self):
# Prepare pixel loss
self.pixel_loss_load()
def call_model(self):
# Generator Prepare (Don't formet torch.compile if needed)
self.generator = UNet_Full().cuda() # Cunet only support 2x SR
# self.generator = torch.compile(self.generator).cuda()
self.generator.train()
def run(self):
self.master_run()
def calculate_loss(self, gen_hr, imgs_hr):
# Generator pixel loss (l1 loss): generated vs. GT
l_g_pix = self.cri_pix(gen_hr, imgs_hr, self.batch_idx)
self.weight_store["pixel_loss"] = l_g_pix
self.generator_loss += l_g_pix
def tensorboard_report(self, iteration):
# self.writer.add_scalar('Loss/train-Generator_Loss-Iteration', self.generator_loss, iteration)
self.writer.add_scalar('Loss/train-Pixel_Loss-Iteration', self.weight_store["pixel_loss"], iteration)
|