APISR / train_code /train_grlgan.py
HikariDawn's picture
feat: initial push
561c629
# -*- coding: utf-8 -*-
import sys
import os
import torch
# import important files
root_path = os.path.abspath('.')
sys.path.append(root_path)
from opt import opt
from architecture.grl import GRL
from architecture.discriminator import UNetDiscriminatorSN, MultiScaleDiscriminator
from train_code.train_master import train_master
class train_grlgan(train_master):
def __init__(self, options, args) -> None:
super().__init__(options, args, "grlgan", True) # Pass a model name unique code
def loss_init(self):
# prepare pixel loss (Generator)
self.pixel_loss_load()
# prepare perceptual loss
self.GAN_loss_load()
def call_model(self):
# Generator: GRL Small
patch_size = 144
if opt['model_size'] == "small":
# GRL small model
self.generator = GRL(
upscale = opt['scale'],
img_size = patch_size,
window_size = 8,
depths = [4, 4, 4, 4],
embed_dim = 128,
num_heads_window = [2, 2, 2, 2],
num_heads_stripe = [2, 2, 2, 2],
mlp_ratio = 2,
qkv_proj_type = "linear",
anchor_proj_type = "avgpool",
anchor_window_down_factor = 2,
out_proj_type = "linear",
conv_type = "1conv",
upsampler = "pixelshuffle",
).cuda()
elif opt['model_size'] == "tiny":
# GRL tiny model
self.generator = GRL(
upscale = opt['scale'],
img_size = 64,
window_size = 8,
depths = [4, 4, 4, 4],
embed_dim = 64,
num_heads_window = [2, 2, 2, 2],
num_heads_stripe = [2, 2, 2, 2],
mlp_ratio = 2,
qkv_proj_type = "linear",
anchor_proj_type = "avgpool",
anchor_window_down_factor = 2,
out_proj_type = "linear",
conv_type = "1conv",
upsampler = "pixelshuffledirect",
).cuda()
elif opt['model_size'] == "tiny2":
# GRL tiny model
self.generator = GRL(
upscale = opt['scale'],
img_size = 64,
window_size = 8,
depths = [4, 4, 4, 4],
embed_dim = 64,
num_heads_window = [2, 2, 2, 2],
num_heads_stripe = [2, 2, 2, 2],
mlp_ratio = 2,
qkv_proj_type = "linear",
anchor_proj_type = "avgpool",
anchor_window_down_factor = 2,
out_proj_type = "linear",
conv_type = "1conv",
upsampler = "nearest+conv", # Change
).cuda()
else:
raise NotImplementedError("We don't support such model size in GRL model")
# self.generator = torch.compile(self.generator).cuda()
# Discriminator
if opt['discriminator_type'] == "PatchDiscriminator":
self.discriminator = MultiScaleDiscriminator(3).cuda()
elif opt['discriminator_type'] == "UNetDiscriminator":
self.discriminator = UNetDiscriminatorSN(3).cuda()
self.generator.train(); self.discriminator.train()
def run(self):
self.master_run()
def calculate_loss(self, gen_hr, imgs_hr):
###################### We have 3 losses on Generator ######################
# Generator Pixel loss (l1 loss): generated vs. GT
l_g_pix = self.cri_pix(gen_hr, imgs_hr)
self.generator_loss += l_g_pix
self.weight_store["pixel_loss"] = l_g_pix
# Generator perceptual loss: generated vs. perceptual
l_g_percep_danbooru = self.cri_danbooru_perceptual(gen_hr, imgs_hr)
l_g_percep_vgg = self.cri_vgg_perceptual(gen_hr, imgs_hr)
l_g_percep = l_g_percep_danbooru + l_g_percep_vgg
self.generator_loss += l_g_percep
self.weight_store["perceptual_loss"] = l_g_percep
# Generator GAN loss label correction
fake_g_preds = self.discriminator(gen_hr)
l_g_gan = self.cri_gan(fake_g_preds, True, is_disc=False) # loss_weight (self.gan_loss_weight) is included
self.generator_loss += l_g_gan
self.weight_store["gan_loss"] = l_g_gan # Already with gan_loss_weight (0.2/1)
def tensorboard_report(self, iteration):
self.writer.add_scalar('Loss/train-Generator_Loss-Iteration', self.generator_loss, iteration)
self.writer.add_scalar('Loss/train-Pixel_Loss-Iteration', self.weight_store["pixel_loss"], iteration)
self.writer.add_scalar('Loss/train-Perceptual_Loss-Iteration', self.weight_store["perceptual_loss"], iteration)
self.writer.add_scalar('Loss/train-Discriminator_Loss-Iteration', self.weight_store["gan_loss"], iteration)