This-and-That / data_loader /video_this_that_dataset.py
HikariDawn777's picture
feat: initial push
59b2a81
raw
history blame
12.5 kB
import os, sys
import json
import cv2
import math
import shutil
import numpy as np
import random
from PIL import Image
import torch.nn.functional as F
import torch
import os.path as osp
import time
from moviepy.editor import VideoFileClip
from torch.utils.data import Dataset
# Import files from the local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from utils.img_utils import resize_with_antialiasing, numpy_to_pt
from utils.optical_flow_utils import flow_to_image, filter_uv, bivariate_Gaussian
from data_loader.video_dataset import tokenize_captions
# For the 2D dilation
blur_kernel = bivariate_Gaussian(99, 10, 10, 0, grid = None, isotropic = True)
def get_thisthat_sam(config, intput_dir, store_dir = None, flip = False, verbose=False):
'''
Args:
idx (int): The index to the folder we need to process
'''
# Read file
file_path = os.path.join(intput_dir, "data.txt")
file1 = open(file_path, 'r')
Lines = file1.readlines()
# Initial the optical flow format we want
thisthat_condition = np.zeros((config["video_seq_length"], config["conditioning_channels"], config["height"], config["width"]), dtype=np.float32) # The last image should be empty
# Init the image
sample_img = cv2.imread(os.path.join(intput_dir, "im_0.jpg"))
org_height, org_width, _ = sample_img.shape
# Prepare masking
controlnet_image_index = []
coordinate_values = []
# Iterate all points in the txt file
for idx in range(len(Lines)):
# Read points
frame_idx, horizontal, vertical = Lines[idx].split(' ')
frame_idx, vertical, horizontal = int(frame_idx), int(float(vertical)), int(float(horizontal))
# Read the mask frame idx
controlnet_image_index.append(frame_idx)
coordinate_values.append((vertical, horizontal))
# Init the base image
base_img = np.zeros((org_height, org_width, 3)).astype(np.float32) # Use the original image size
base_img.fill(255)
# Draw square around the target position
dot_range = 10 # Diameter
for i in range(-1*dot_range, dot_range+1):
for j in range(-1*dot_range, dot_range+1):
dil_vertical, dil_horizontal = vertical + i, horizontal + j
if (0 <= dil_vertical and dil_vertical < base_img.shape[0]) and (0 <= dil_horizontal and dil_horizontal < base_img.shape[1]):
if idx == 0:
base_img[dil_vertical][dil_horizontal] = [0, 0, 255] # The first point should be red
else:
base_img[dil_vertical][dil_horizontal] = [0, 255, 0] # The second point should be green to distinguish the first point
# Dilate
if config["dilate"]:
base_img = cv2.filter2D(base_img, -1, blur_kernel)
##############################################################################################################################
### The core pipeline of processing is: Dilate -> Resize -> Range Shift -> Transpose Shape -> Store
# Resize frames Don't use negative and don't resize in [0,1]
base_img = cv2.resize(base_img, (config["width"], config["height"]), interpolation = cv2.INTER_CUBIC)
# Flip the image for aug if needed
if flip:
base_img = np.fliplr(base_img)
# Channel Transform and Range Shift
if config["conditioning_channels"] == 3:
# Map to [0, 1] range
if store_dir is not None and verbose: # For the first frame condition visualization
cv2.imwrite(os.path.join(store_dir, "condition_TT"+str(idx)+".png"), base_img)
base_img = base_img / 255.0
else:
raise NotImplementedError()
# ReOrganize shape
base_img = base_img.transpose(2, 0, 1) # hwc -> chw
# Check the min max value range
# if verbose:
# print("{} min, max range value is {} - {}".format(intput_dir, np.min(base_img), np.max(base_img)))
# Write base img based on frame_idx
thisthat_condition[frame_idx] = base_img # Only the first frame, the rest is 0 initialized
##############################################################################################################################
if config["motion_bucket_id"] is None:
# take the motion to stats collected before
reflected_motion_bucket_id = 200
else:
reflected_motion_bucket_id = config["motion_bucket_id"]
# print("Motion Bucket ID is ", reflected_motion_bucket_id)
return (thisthat_condition, reflected_motion_bucket_id, controlnet_image_index, coordinate_values)
class Video_ThisThat_Dataset(Dataset):
'''
Video Dataset to load sequential frames for training with needed pre-processing and process with optical flow
'''
def __init__(self, config, device, normalize=True, tokenizer=None):
# Attribute variables
self.config = config
self.device = device
self.normalize = normalize
self.tokenizer = tokenizer
# Obtain values
self.video_seq_length = config["video_seq_length"]
self.height = config["height"]
self.width = config["width"]
# Process data
self.video_lists = []
for dataset_path in config["dataset_path"]:
for video_name in sorted(os.listdir(dataset_path)):
if not os.path.exists(os.path.join(dataset_path, video_name, "data.txt")):
continue
self.video_lists.append(os.path.join(dataset_path, video_name))
print("length of the dataset is ", len(self.video_lists))
def __len__(self):
return len(self.video_lists)
def _extract_frame_bridge(self, idx, flip=False):
''' Extract the frame in video based on the needed fps from already extracted frame
Args:
idx (int): The index to the file in the directory
flip (bool): Bool for whether we will flip
Returns:
video_frames (numpy): Extracted video frames in numpy format
'''
# Init the the Video Reader
# The naming of the Bridge dataset follow a pattern: im_x.jpg, so we need to
video_frame_path = self.video_lists[idx]
# Find needed file
needed_img_path = []
for idx in range(self.video_seq_length):
img_path = os.path.join(video_frame_path, "im_" + str(idx) + ".jpg")
needed_img_path.append(img_path)
# Read all img_path based on the order
video_frames = []
for img_path in needed_img_path:
if not os.path.exists(img_path):
print("We don't have ", img_path)
frame = cv2.imread(img_path)
try:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
except Exception:
print("The exception place is ", img_path)
# Resize frames
frame = cv2.resize(frame, (self.width, self.height), interpolation = cv2.INTER_CUBIC)
# Flip aug
if flip:
frame = np.fliplr(frame)
# Collect frames
video_frames.append(np.expand_dims(frame, axis=0)) # The frame is already RGB, there is no need to convert here.
# Concatenate
video_frames = np.concatenate(video_frames, axis=0)
assert(len(video_frames) == self.video_seq_length)
# Returns
return video_frames
def __getitem__(self, idx):
''' Get item by idx and pre-process by Resize and Normalize to [0, 1]
Args:
idx (int): The index to the file in the directory
Returns:
return_dict (dict): video_frames (torch.float32) [-1, 1] and controlnet_condition (torch.float32) [0, 1]
'''
# Prepare the text if needed:
if self.config["use_text"]:
# Read the file
file_path = os.path.join(self.video_lists[idx], "lang.txt")
file = open(file_path, 'r')
prompt = file.readlines()[0] # Only read the first line
if self.config["mix_ambiguous"] and os.path.exists(os.path.join(self.video_lists[idx], "processed_text.txt")):
# If we don't have this txt file, we skip
######################################################## Mix up prompt ########################################################
# Read the file
file_path = os.path.join(self.video_lists[idx], "processed_text.txt")
file = open(file_path, 'r')
prompts = [line for line in file.readlines()] # Only read the first line
# Get the componenet
action = prompts[0][:-1]
this = prompts[1][:-1]
there = prompts[2][:-1]
random_value = random.random()
# If less than 0.4, we don't care, just use the most concrete one
if random_value >= 0.4 and random_value < 0.6:
# Mask pick object to "This"
prompt = action + " this to " + there
elif random_value >= 0.6 and random_value < 0.8:
# Mask place position to "There"
prompt = action + " " + this + " to there"
elif random_value >= 0.8 and random_value < 1.0:
# Just be like "this to there"
prompt = action + " this to there"
# print("New prompt is ", prompt)
###################################################################################################################################################
# else:
# print("We don't have llama processed prompt at ", self.video_lists[idx])
else:
prompt = ""
# Tokenize text prompt
tokenized_prompt = tokenize_captions(prompt, self.tokenizer, self.config)
# Dataset aug by chance (it is needed to check whether there is any object position words [left|right] in the prompt text)
flip = False
if random.random() < self.config["flip_aug_prob"]:
if self.config["use_text"]:
if prompt.find("left") == -1 and prompt.find("right") == -1: # Cannot have position word, like left and right (up and down is ok)
flip = True
else:
flip = True
# Read frames for different dataset; Currently, we have WebVid / Bridge
if self.config["dataset_name"] == "Bridge":
video_frames_raw = self._extract_frame_bridge(idx, flip=flip)
else:
raise NotImplementedError("We don't support this dataset loader")
# Scale [0, 255] -> [-1, 1] if needed
if self.normalize:
video_frames = video_frames_raw.astype(np.float32) / 127.5 - 1 # Be careful to cast to float32
# Transform to Pytorch Tensor in the range [-1, 1]
video_frames = numpy_to_pt(video_frames)
# Generate the pairs we need
intput_dir = self.video_lists[idx]
# Get the This That point information
controlnet_condition, reflected_motion_bucket_id, controlnet_image_index, coordinate_values = get_thisthat_sam(self.config, intput_dir, flip=flip)
controlnet_condition = torch.from_numpy(controlnet_condition)
# Cast other value to tensor
reflected_motion_bucket_id = torch.tensor(reflected_motion_bucket_id, dtype=torch.float32)
controlnet_image_index = torch.tensor(controlnet_image_index, dtype=torch.int32)
coordinate_values = torch.tensor(coordinate_values, dtype=torch.int32)
# The tensor we returned is torch float32. We won't cast here for mixed precision training!
return {"video_frames" : video_frames,
"controlnet_condition" : controlnet_condition,
"reflected_motion_bucket_id" : reflected_motion_bucket_id,
"controlnet_image_index": controlnet_image_index,
"prompt": tokenized_prompt,
"coordinate_values": coordinate_values, # Useless now, but I still passed back
}