Spaces:
Running
Running
import numpy as np | |
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from model import SRCNNModel, pred_SRCNN | |
from PIL import Image | |
title = "Super Resolution with CNN" | |
description = """ | |
Your low resolution image will be reconstructed to high resolution with a scale of 2 with a convolutional neural network!<br> | |
CNN output on the left, bicubic interpolation output on the right.<br> | |
Training and dataset can be found on my [github page](https://github.com/susuhu/super-resolution/blob/main/Super_Resolution.ipynb).<br> | |
""" | |
article = "Check out the origianl [paper](https://arxiv.org/abs/1501.00092) proposed by Dong *et al*." | |
# load model | |
print("Loading SRCNN model...") | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = SRCNNModel().to(device) | |
model.load_state_dict(torch.load('SRCNNmodel_trained.pt',map_location=torch.device(device) )) | |
model.eval() | |
print("SRCNN model loaded!") | |
# def image_grid(imgs, rows, cols): | |
# ''' | |
# imgs:list of PILImage | |
# ''' | |
# assert len(imgs) == rows*cols | |
# w, h = imgs[0].size | |
# grid = Image.new('RGB', size=(cols*w, rows*h)) | |
# grid_w, grid_h = grid.size | |
# for i, img in enumerate(imgs): | |
# grid.paste(img, box=(i%cols*w, i//cols*h)) | |
# return grid | |
def sepia(image): | |
# gradio open image as np array | |
image = Image.fromarray(image,mode='RGB') | |
out_final,image_bicubic,image = pred_SRCNN(model=model,image=image,device=device) | |
# grid = image_grid([out_final,image_bicubic],1,2) | |
return out_final,image_bicubic | |
demo = gr.Interface(fn = sepia, inputs=gr.inputs.Image(label="Upload image"), [gr.outputs.Image(label="Conv net"), gr.outputs.Image(label="Bicubic interpoloation")],title=title,description = description,article = article,examples=[['LR_image.png'],['barbara.png']]) | |
demo.launch() |