Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,11 @@ from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
|
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
torch_dtype = torch.float16
|
@@ -17,7 +21,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
17 |
MAX_IMAGE_SIZE = 1024
|
18 |
|
19 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
20 |
-
def infer_t2i(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
21 |
|
22 |
if randomize_seed:
|
23 |
seed = random.randint(0, MAX_SEED)
|
@@ -40,7 +44,7 @@ def infer_t2i(prompt, negative_prompt, seed, randomize_seed, width, height, guid
|
|
40 |
return image, seed
|
41 |
|
42 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
43 |
-
def infer_i2i(prompt, image, strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
44 |
|
45 |
if randomize_seed:
|
46 |
seed = random.randint(0, MAX_SEED)
|
@@ -64,6 +68,34 @@ def infer_i2i(prompt, image, strength, negative_prompt, seed, randomize_seed, wi
|
|
64 |
|
65 |
return image, seed
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
examples = [
|
68 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
69 |
"An astronaut riding a green horse",
|
@@ -116,6 +148,8 @@ with gr.Blocks(css=css) as demo:
|
|
116 |
step=1,
|
117 |
value=0,
|
118 |
)
|
|
|
|
|
119 |
|
120 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
121 |
|
@@ -126,7 +160,7 @@ with gr.Blocks(css=css) as demo:
|
|
126 |
minimum=256,
|
127 |
maximum=MAX_IMAGE_SIZE,
|
128 |
step=32,
|
129 |
-
value=
|
130 |
)
|
131 |
|
132 |
height = gr.Slider(
|
@@ -134,7 +168,7 @@ with gr.Blocks(css=css) as demo:
|
|
134 |
minimum=256,
|
135 |
maximum=MAX_IMAGE_SIZE,
|
136 |
step=32,
|
137 |
-
value=
|
138 |
)
|
139 |
|
140 |
with gr.Row():
|
@@ -162,7 +196,7 @@ with gr.Blocks(css=css) as demo:
|
|
162 |
|
163 |
run_button.click(
|
164 |
fn=infer_t2i,
|
165 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
166 |
outputs = [result, seed]
|
167 |
)
|
168 |
|
@@ -207,6 +241,8 @@ with gr.Blocks(css=css) as demo:
|
|
207 |
)
|
208 |
|
209 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
|
210 |
|
211 |
with gr.Row():
|
212 |
|
@@ -215,7 +251,7 @@ with gr.Blocks(css=css) as demo:
|
|
215 |
minimum=256,
|
216 |
maximum=MAX_IMAGE_SIZE,
|
217 |
step=32,
|
218 |
-
value=
|
219 |
)
|
220 |
|
221 |
height = gr.Slider(
|
@@ -223,7 +259,7 @@ with gr.Blocks(css=css) as demo:
|
|
223 |
minimum=256,
|
224 |
maximum=MAX_IMAGE_SIZE,
|
225 |
step=32,
|
226 |
-
value=
|
227 |
)
|
228 |
|
229 |
with gr.Row():
|
@@ -259,7 +295,106 @@ with gr.Blocks(css=css) as demo:
|
|
259 |
|
260 |
run_button.click(
|
261 |
fn=infer_i2i,
|
262 |
-
inputs = [prompt, image_upload_input, editing_strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
outputs = [result, seed]
|
264 |
)
|
265 |
|
|
|
6 |
import torch
|
7 |
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
all_model_id = {
|
10 |
+
"DreamShaper-8": "Lykon/dreamshaper-8",
|
11 |
+
"SD-v1.4": "CompVis/stable-diffusion-v1-4",
|
12 |
+
"RealisticVision-v4.0": "SG161222/Realistic_Vision_V4.0_noVAE"
|
13 |
+
}
|
14 |
|
15 |
if torch.cuda.is_available():
|
16 |
torch_dtype = torch.float16
|
|
|
21 |
MAX_IMAGE_SIZE = 1024
|
22 |
|
23 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
24 |
+
def infer_t2i(model_repo_id, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
25 |
|
26 |
if randomize_seed:
|
27 |
seed = random.randint(0, MAX_SEED)
|
|
|
44 |
return image, seed
|
45 |
|
46 |
#@spaces.GPU #[uncomment to use ZeroGPU]
|
47 |
+
def infer_i2i(model_repo_id, prompt, image, strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
48 |
|
49 |
if randomize_seed:
|
50 |
seed = random.randint(0, MAX_SEED)
|
|
|
68 |
|
69 |
return image, seed
|
70 |
|
71 |
+
#@spaces.GPU #[uncomment to use ZeroGPU]
|
72 |
+
def infer_ip_adapter(model_repo_id, prompt, image, scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
73 |
+
|
74 |
+
if randomize_seed:
|
75 |
+
seed = random.randint(0, MAX_SEED)
|
76 |
+
|
77 |
+
generator = torch.Generator().manual_seed(seed)
|
78 |
+
|
79 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
80 |
+
pipe = pipe.to(device)
|
81 |
+
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
82 |
+
pipeline.set_ip_adapter_scale(scale)
|
83 |
+
|
84 |
+
image = pipe(
|
85 |
+
prompt = prompt,
|
86 |
+
image = image.resize((width, height)),
|
87 |
+
strength = strength,
|
88 |
+
negative_prompt = negative_prompt,
|
89 |
+
guidance_scale = guidance_scale,
|
90 |
+
num_inference_steps = num_inference_steps,
|
91 |
+
ip_adapter_image = image,
|
92 |
+
width = width,
|
93 |
+
height = height,
|
94 |
+
generator = generator
|
95 |
+
).images[0]
|
96 |
+
|
97 |
+
return image, seed
|
98 |
+
|
99 |
examples = [
|
100 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
101 |
"An astronaut riding a green horse",
|
|
|
148 |
step=1,
|
149 |
value=0,
|
150 |
)
|
151 |
+
|
152 |
+
model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.key()), value=list(all_model_id.key())[0])
|
153 |
|
154 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
155 |
|
|
|
160 |
minimum=256,
|
161 |
maximum=MAX_IMAGE_SIZE,
|
162 |
step=32,
|
163 |
+
value=512, #Replace with defaults that work for your model
|
164 |
)
|
165 |
|
166 |
height = gr.Slider(
|
|
|
168 |
minimum=256,
|
169 |
maximum=MAX_IMAGE_SIZE,
|
170 |
step=32,
|
171 |
+
value=512, #Replace with defaults that work for your model
|
172 |
)
|
173 |
|
174 |
with gr.Row():
|
|
|
196 |
|
197 |
run_button.click(
|
198 |
fn=infer_t2i,
|
199 |
+
inputs = [all_model_id[model_choice], prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
200 |
outputs = [result, seed]
|
201 |
)
|
202 |
|
|
|
241 |
)
|
242 |
|
243 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
244 |
+
|
245 |
+
model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.key()), value=list(all_model_id.key())[0])
|
246 |
|
247 |
with gr.Row():
|
248 |
|
|
|
251 |
minimum=256,
|
252 |
maximum=MAX_IMAGE_SIZE,
|
253 |
step=32,
|
254 |
+
value=512, #Replace with defaults that work for your model
|
255 |
)
|
256 |
|
257 |
height = gr.Slider(
|
|
|
259 |
minimum=256,
|
260 |
maximum=MAX_IMAGE_SIZE,
|
261 |
step=32,
|
262 |
+
value=512, #Replace with defaults that work for your model
|
263 |
)
|
264 |
|
265 |
with gr.Row():
|
|
|
295 |
|
296 |
run_button.click(
|
297 |
fn=infer_i2i,
|
298 |
+
inputs = [all_model_id[model_choice], prompt, image_upload_input, editing_strength, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
299 |
+
outputs = [result, seed]
|
300 |
+
)
|
301 |
+
|
302 |
+
with gr.Tab("IP-Adapter"):
|
303 |
+
|
304 |
+
with gr.Column(elem_id="col-container"):
|
305 |
+
gr.Markdown(f"""
|
306 |
+
# Text-to-Image Gradio Template
|
307 |
+
""")
|
308 |
+
|
309 |
+
with gr.Row():
|
310 |
+
|
311 |
+
prompt = gr.Text(
|
312 |
+
label="Prompt",
|
313 |
+
show_label=False,
|
314 |
+
max_lines=1,
|
315 |
+
placeholder="Enter your prompt",
|
316 |
+
container=False,
|
317 |
+
)
|
318 |
+
|
319 |
+
run_button = gr.Button("Run", scale=0)
|
320 |
+
|
321 |
+
image_upload_input = gr.Image(label="Upload an Image", type="pil")
|
322 |
+
|
323 |
+
result = gr.Image(label="Result", show_label=False)
|
324 |
+
|
325 |
+
with gr.Accordion("Advanced Settings", open=False):
|
326 |
+
|
327 |
+
negative_prompt = gr.Text(
|
328 |
+
label="Negative prompt",
|
329 |
+
max_lines=1,
|
330 |
+
placeholder="Enter a negative prompt",
|
331 |
+
visible=False,
|
332 |
+
)
|
333 |
+
|
334 |
+
seed = gr.Slider(
|
335 |
+
label="Seed",
|
336 |
+
minimum=0,
|
337 |
+
maximum=MAX_SEED,
|
338 |
+
step=1,
|
339 |
+
value=0,
|
340 |
+
)
|
341 |
+
|
342 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
343 |
+
|
344 |
+
model_choice = gr.Dropdown(label="Choose Model", choices=list(all_model_id.key()), value=list(all_model_id.key())[0])
|
345 |
+
|
346 |
+
with gr.Row():
|
347 |
+
|
348 |
+
width = gr.Slider(
|
349 |
+
label="Width",
|
350 |
+
minimum=256,
|
351 |
+
maximum=MAX_IMAGE_SIZE,
|
352 |
+
step=32,
|
353 |
+
value=512, #Replace with defaults that work for your model
|
354 |
+
)
|
355 |
+
|
356 |
+
height = gr.Slider(
|
357 |
+
label="Height",
|
358 |
+
minimum=256,
|
359 |
+
maximum=MAX_IMAGE_SIZE,
|
360 |
+
step=32,
|
361 |
+
value=512, #Replace with defaults that work for your model
|
362 |
+
)
|
363 |
+
|
364 |
+
with gr.Row():
|
365 |
+
|
366 |
+
guidance_scale = gr.Slider(
|
367 |
+
label="Guidance scale",
|
368 |
+
minimum=0.0,
|
369 |
+
maximum=10.0,
|
370 |
+
step=0.1,
|
371 |
+
value=7.5, #Replace with defaults that work for your model
|
372 |
+
)
|
373 |
+
|
374 |
+
num_inference_steps = gr.Slider(
|
375 |
+
label="Number of inference steps",
|
376 |
+
minimum=1,
|
377 |
+
maximum=50,
|
378 |
+
step=1,
|
379 |
+
value=25, #Replace with defaults that work for your model
|
380 |
+
)
|
381 |
+
|
382 |
+
ip_adapter_scale = gr.Slider(
|
383 |
+
label="Strength of image condition",
|
384 |
+
minimum=0,
|
385 |
+
maximum=1,
|
386 |
+
step=0.01,
|
387 |
+
value=0.4, #Replace with defaults that work for your model
|
388 |
+
)
|
389 |
+
|
390 |
+
gr.Examples(
|
391 |
+
examples = examples,
|
392 |
+
inputs = [prompt]
|
393 |
+
)
|
394 |
+
|
395 |
+
run_button.click(
|
396 |
+
fn=infer_ip_adapter,
|
397 |
+
inputs = [all_model_id[model_choice], prompt, image_upload_input, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
398 |
outputs = [result, seed]
|
399 |
)
|
400 |
|