File size: 9,837 Bytes
f20057b
 
 
 
 
 
 
 
12089a1
7ea3311
f20057b
 
 
 
 
 
 
 
 
 
 
 
7ea3311
 
 
f20057b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6893a8c
f20057b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12089a1
f20057b
 
 
 
1154e3f
f20057b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65966af
f20057b
 
 
 
 
 
 
 
 
 
0ea8e96
f20057b
 
 
0ea8e96
f20057b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da21fe6
0ea8e96
da21fe6
ed2c0ea
9b48a46
0ea8e96
 
 
da21fe6
f20057b
9b48a46
f20057b
 
 
 
 
 
9b48a46
f20057b
 
 
 
 
 
 
 
 
 
 
 
 
 
10e2d68
f20057b
 
 
 
 
 
 
 
 
 
10e2d68
0ea8e96
1154e3f
0ea8e96
da21fe6
9b48a46
0ea8e96
10e2d68
0ea8e96
10e2d68
 
 
 
 
 
bbeb00f
 
0ea8e96
 
 
f20057b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e2d68
f20057b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import torch
import gradio as gr
import random
import numpy as np
from PIL import Image
import imagehash
import cv2
import os
import spaces
import subprocess

from transformers import AutoProcessor, AutoModelForCausalLM
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
from transformers.image_transforms import resize, to_channel_dimension_format

from typing import List
from PIL import Image
from collections import Counter

from datasets import load_dataset, concatenate_datasets


subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)


DEVICE = torch.device("cuda")
PROCESSOR = AutoProcessor.from_pretrained(
    "HuggingFaceM4/idefics2_raven_finetuned",
    token=os.environ["HF_AUTH_TOKEN"],
)
MODEL = AutoModelForCausalLM.from_pretrained(
    "HuggingFaceM4/idefics2_raven_finetuned",
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    token=os.environ["HF_AUTH_TOKEN"],
).to(DEVICE)
if MODEL.config.use_resampler:
    image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
else:
    image_seq_len = (
        MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
    ) ** 2
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
DATASET = load_dataset("HuggingFaceM4/RAVEN_rendered", split="validation", token=os.environ["HF_AUTH_TOKEN"])

## Utils

def convert_to_rgb(image):
    # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
    # for transparent images. The call to `alpha_composite` handles this case
    if image.mode == "RGB":
        return image

    image_rgba = image.convert("RGBA")
    background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
    alpha_composite = Image.alpha_composite(background, image_rgba)
    alpha_composite = alpha_composite.convert("RGB")
    return alpha_composite

# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
# so this is a hack in order to redefine ONLY the transform method
def custom_transform(x):
    x = convert_to_rgb(x)
    x = to_numpy_array(x)
    x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
    x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
    x = PROCESSOR.image_processor.normalize(
        x,
        mean=PROCESSOR.image_processor.image_mean,
        std=PROCESSOR.image_processor.image_std
    )
    x = to_channel_dimension_format(x, ChannelDimension.FIRST)
    x = torch.tensor(x)
    return x

def pixel_difference(image1, image2):
    def color(im):
        arr = np.array(im).flatten()
        arr_list = arr.tolist()
        counts = Counter(arr_list)
        most_common = counts.most_common(2)
        if most_common[0][0] == 255:
            return most_common[1][0]
        else:
            return most_common[0][0]

    def canny_edges(im):
        im = cv2.Canny(np.array(im), 50, 100)
        im[im!=0] = 255
        return Image.fromarray(im)

    def phash(im):
        return imagehash.phash(canny_edges(im), hash_size=32)

    def surface(im):
        return (np.array(im) != 255).sum()

    color_diff = np.abs(color(image1) - color(image2))
    hash_diff = phash(image1) - phash(image2)
    surface_diff = np.abs(surface(image1) - surface(image2))

    if int(hash_diff/7) < 10:
        return color_diff < 10 or int(surface_diff / (160 * 160) * 100) < 10
    elif color_diff < 10:
        return int(surface_diff / (160 * 160) * 100) < 10 or int(hash_diff/7) < 10
    elif int(surface_diff / (160 * 160) * 100) < 10:
        return int(hash_diff/7) < 10 or color_diff < 10
    else:
        return False

# End of Utils


def load_sample():
    n = len(DATASET)
    found_sample = False
    while not found_sample:
        idx = random.randint(0, n)
        sample = DATASET[idx]
        found_sample = True
    return sample["image"], sample["label"], "", "", ""


@spaces.GPU(duration=180)
def model_inference(
    image,
):
    if image is None:
        raise gr.Error("Load a new sample first!")

    # return "A"
    inputs = PROCESSOR.tokenizer(
        f"{BOS_TOKEN}User:<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>Which figure should complete the logical sequence?<end_of_utterance>\nAssistant:",
        return_tensors="pt",
        add_special_tokens=False,
    )
    inputs["pixel_values"] = PROCESSOR.image_processor(
        [image],
        transform=custom_transform
    )
    inputs = {
        k: v.to(DEVICE)
        for k, v in inputs.items()
    }
    generation_kwargs = dict(
        inputs,
        bad_words_ids=BAD_WORDS_IDS,
        max_length=128,
    )
    # Regular generation version
    generated_ids = MODEL.generate(**generation_kwargs)
    generated_text = PROCESSOR.batch_decode(
        generated_ids,
        skip_special_tokens=True
    )[0]
    return generated_text[-1]


model_prediction = gr.Label(
    label="AI's guess",
    visible=True,
)
user_prediction = gr.Label(
    label="Your guess",
    visible=True,
)
result = gr.TextArea(
    label="Win or lose?",
    visible=True,
    lines=1,
    max_lines=1,
    interactive=False,
)



css = """
.gradio-container{max-width: 1000px!important}
h1{display: flex;align-items: center;justify-content: center;gap: .25em}
*{transition: width 0.5s ease, flex-grow 0.5s ease}
"""


with gr.Blocks(title="Beat the AI", theme=gr.themes.Base(), css=css) as demo:
    gr.Markdown(
        """
        # Can you beat the AI at RAVEN puzzles?

        *This demo features an early fine-tuned version of our forthcoming Idefics2 model (read about idefics1 [here](https://huggingface.co/HuggingFaceM4/idefics-80b-instruct). The model was specifically fine-tuned on the [RAVEN](https://huggingface.co/datasets/HuggingFaceM4/RAVEN) dataset and reached 91% accuracy on the validation set.*

        RAVE Progressive Matrices are abstract visual reasoning puzzles. The panels describe logical sequences of shapes and colors (row by row). One is asked to find the option that completes the 3rd sequence following the same logic described by the first two sequences. We recommend looking at the images on a full screen with enough brightness given that some options differ by small differences in sizes and nuances of colors.

        To get started, load a new puzzle. 🧠
        """
    )
    load_new_sample = gr.Button(value="Load a new puzzle")
    with gr.Row(equal_height=True):
        with gr.Column(scale=4, min_width=250) as upload_area:
            imagebox = gr.Image(
                image_mode="L",
                type="pil",
                visible=True,
                sources=[],
            )
        with gr.Column(scale=4):
            with gr.Row():
                a = gr.Button(value="A", min_width=1)
                b = gr.Button(value="B", min_width=1)
                c = gr.Button(value="C", min_width=1)
                d = gr.Button(value="D", min_width=1)
            with gr.Row():
                e = gr.Button(value="E", min_width=1)
                f = gr.Button(value="F", min_width=1)
                g = gr.Button(value="G", min_width=1)
                h = gr.Button(value="H", min_width=1)
            with gr.Row():
                user_prediction.render()
                model_prediction.render()
            solution  = gr.TextArea(
                label="Solution",
                visible=False,
                lines=1,
                max_lines=1,
                interactive=False,
            )
            with gr.Row():
                result.render()

    def result_string(model_pred, user_pred, solution):
        if solution == "":
            return ""

        solution_letter = chr(ord('A') + int(solution))
        solution_string = f"The correct answer is {solution_letter}."

        win_or_loose = "πŸ₯‡" if user_pred == solution_letter else "πŸ™ˆ"

        if user_pred == solution_letter and model_pred == solution_letter:
            comparison_string = "Both you and the AI got it correctly!"
        elif user_pred == solution_letter and model_pred != solution_letter:
            comparison_string = "You beat the AI!"
        elif user_pred != solution_letter and model_pred != solution_letter:
            comparison_string = "Both you and the AI got it wrong!"
        elif user_pred != solution_letter and model_pred == solution_letter:
            comparison_string = "The AI beat you!"

        return f"{win_or_loose} {comparison_string} {solution_string}"

    load_new_sample.click(
        fn=load_sample,
        inputs=[],
        outputs=[imagebox, solution, model_prediction, user_prediction, result]
    )
    gr.on(
        triggers=[
            a.click,
            b.click,
            c.click,
            d.click,
            e.click,
            f.click,
            g.click,
            h.click,
        ],
        fn=model_inference,
        inputs=[imagebox],
        outputs=[model_prediction],
    ).then(
        fn=result_string,
        inputs=[model_prediction, user_prediction, solution],
        outputs=[result],
    )

    a.click(fn=lambda: "A", inputs=[], outputs=[user_prediction])
    b.click(fn=lambda: "B", inputs=[], outputs=[user_prediction])
    c.click(fn=lambda: "C", inputs=[], outputs=[user_prediction])
    d.click(fn=lambda: "D", inputs=[], outputs=[user_prediction])
    e.click(fn=lambda: "E", inputs=[], outputs=[user_prediction])
    f.click(fn=lambda: "F", inputs=[], outputs=[user_prediction])
    g.click(fn=lambda: "G", inputs=[], outputs=[user_prediction])
    h.click(fn=lambda: "H", inputs=[], outputs=[user_prediction])

    demo.load()

demo.queue(max_size=40, api_open=False)
demo.launch(max_threads=400)