HugoVoxx commited on
Commit
c6eebc1
·
verified ·
1 Parent(s): 2c38483

Update ag4masses/alphageometry/lm_inference.py

Browse files
Files changed (1) hide show
  1. ag4masses/alphageometry/lm_inference.py +189 -189
ag4masses/alphageometry/lm_inference.py CHANGED
@@ -1,189 +1,189 @@
1
- # Copyright 2023 DeepMind Technologies Limited
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- """Wrapper for language modeling inference implemented in Meliad."""
17
- from typing import Any, Dict
18
-
19
- import jax
20
- import models # pylint: disable=unused-import
21
- import t5.data
22
- from meliad_lib.meliad.transformer import inference_utils
23
-
24
-
25
- np = jax.numpy
26
-
27
-
28
- Trainer = inference_utils.Trainer
29
-
30
- MetricsOutput = Dict[str, Any] # Metrics output by model.
31
-
32
-
33
- parse_gin_configuration = inference_utils.parse_gin_configuration
34
-
35
-
36
- class LanguageModelInference:
37
- """Meliad wrapper for LM inference."""
38
-
39
- def __init__(self, vocab_path: str, load_dir: str, mode='beam_search'):
40
- self.vocab = t5.data.SentencePieceVocabulary(vocab_path)
41
-
42
- # This task won't be pulling from a dataset.
43
- def null_iter_fn() -> None:
44
- return None
45
-
46
- process_summaries_f = inference_utils.models.process_summaries_function(
47
- self.vocab
48
- )
49
-
50
- trainer = inference_utils.training_loop.Trainer(
51
- get_training_dataset_iterator=null_iter_fn,
52
- get_test_dataset_iterator=None,
53
- pretty_print_input_function=None,
54
- process_summaries_function=process_summaries_f,
55
- load_dir=load_dir,
56
- workdir='', # Don't log or save checkpoints.
57
- replicate_mode=False,
58
- ) # Run on a single device at batch size 1.
59
- self.trainer = trainer
60
-
61
- # Create and initialize the model.
62
- (tstate, _, imodel, prngs) = trainer.initialize_model()
63
- self.imodel = imodel
64
- self.batch_size = imodel.task_config.batch_size
65
-
66
- self.n = imodel.num_heads
67
- self.h = imodel.head_size
68
-
69
- # Create an inference task.
70
- writers = {}
71
- self.task = trainer.create_training_task(mode, imodel, prngs, writers) # pylint: disable=too-many-function-args
72
-
73
- # Register any additional actions.
74
- # Actions are cleared first for use with colab.
75
- inference_utils.training_loop.clear_interstep_callbacks()
76
- inference_utils.training_loop.register_interstep_callbacks()
77
- self.tstate = tstate
78
-
79
- # some default parameters.
80
- eos = [0] * 1024
81
- for idx in self.encode_list(['.', ';']):
82
- eos[idx] = 1
83
-
84
- self.eos = np.array(eos, dtype=np.bfloat16)
85
- self.mask = jax.numpy.ones([1024], dtype=np.bfloat16)
86
-
87
- def decode(self, ids: list[int]) -> str:
88
- return self.vocab.decode(ids)
89
-
90
- def decode_list(self, tokens: list[int]) -> list[str]:
91
- return [self.decode([tok]) for tok in tokens]
92
-
93
- def encode(self, inputs_str: str) -> list[int]:
94
- return self.vocab.encode(inputs_str)
95
-
96
- def encode_list(self, inputs_strs: list[str]) -> list[int]:
97
- result = [self.vocab.encode(x) for x in inputs_strs]
98
- assert all([len(x) == 1 for x in result]), [
99
- self.decode(x) for x in result if len(x) != 1
100
- ]
101
- return [x[0] for x in result]
102
-
103
- def call(
104
- self,
105
- inputs: np.ndarray,
106
- dstate: tuple[dict[str, np.ndarray], ...] = None,
107
- eos: np.ndarray = None,
108
- mask: np.ndarray = None,
109
- ) -> MetricsOutput:
110
- """Call the meliad model."""
111
- batch_size, length = inputs.shape
112
- inputs = jax.numpy.pad(inputs, [(0, 0), (0, 1024 - length)])
113
-
114
- if eos is None:
115
- eos = self.eos
116
- if mask is None:
117
- mask = self.mask
118
-
119
- x = {'targets': inputs, 'length': length, 'eos': eos, 'mask': mask}
120
-
121
- if dstate is not None:
122
- x['start_of_sequence'] = jax.numpy.array([False] * batch_size)
123
- else:
124
- dstate = tuple(
125
- [{ # this dummy value will never be used.
126
- 'current_index': np.array([0] * batch_size, dtype=np.int32),
127
- 'keys': np.zeros(
128
- (batch_size, 2048, self.n, self.h), dtype=np.bfloat16
129
- ),
130
- 'values': np.zeros(
131
- (batch_size, 2048, self.n, self.h), dtype=np.bfloat16
132
- ),
133
- 'recurrent_kvq': None,
134
- 'relative_position_bias': np.zeros(
135
- (batch_size, self.n, 1, 1024), dtype=np.bfloat16
136
- ),
137
- }]
138
- * 12
139
- )
140
- x['start_of_sequence'] = jax.numpy.array([True] * batch_size)
141
-
142
- x['dstate'] = dstate
143
- _, metrics_np = self.task.run_step(self.tstate, x, 0)
144
- return metrics_np
145
-
146
- def beam_decode(
147
- self,
148
- inputs: str,
149
- eos_tokens: np.ndarray = None,
150
- mask_tokens: np.ndarray = None,
151
- dstate: dict[str, np.ndarray] = None,
152
- ) -> MetricsOutput:
153
- """Beam search."""
154
- inputs = jax.numpy.array([self.vocab.encode(inputs)] * self.batch_size)
155
-
156
- eos = self.eos
157
- if eos_tokens is not None:
158
- eos_ids = self.encode_list(eos_tokens)
159
- eos = np.array(
160
- [1 if idx in eos_ids else 0 for idx in range(1024)], dtype=np.bfloat16
161
- ).reshape((1, 1, 1024))
162
-
163
- mask = self.mask
164
- if mask_tokens is not None:
165
- mask_ids = self.encode_list(mask_tokens)
166
- mask = np.array(
167
- [0 if idx in mask_ids else 1 for idx in range(1024)],
168
- dtype=np.bfloat16,
169
- ).reshape((1, 1, 1024))
170
-
171
- metrics_np = self.call(inputs, dstate=dstate, eos=eos, mask=mask)
172
-
173
- finished_seqs = metrics_np['finished_seqs']
174
- finished_scores = metrics_np['finished_scores']
175
-
176
- seqs = []
177
- scores = []
178
- for seq, score in zip(finished_seqs, finished_scores):
179
- seq = self.decode(seq[1:])
180
- seqs.append(seq)
181
- scores.append(score)
182
-
183
- return {
184
- 'finished_seqs': finished_seqs,
185
- 'finished_scores': finished_scores,
186
- 'seqs_str': seqs,
187
- 'scores': scores,
188
- 'dstate': metrics_np['dstate'],
189
- }
 
1
+ # Copyright 2023 DeepMind Technologies Limited
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Wrapper for language modeling inference implemented in Meliad."""
17
+ from typing import Any, Dict
18
+
19
+ import jax
20
+ import models # pylint: disable=unused-import
21
+ import t5.data
22
+ from aglib.meliad.transformer import inference_utils
23
+
24
+
25
+ np = jax.numpy
26
+
27
+
28
+ Trainer = inference_utils.Trainer
29
+
30
+ MetricsOutput = Dict[str, Any] # Metrics output by model.
31
+
32
+
33
+ parse_gin_configuration = inference_utils.parse_gin_configuration
34
+
35
+
36
+ class LanguageModelInference:
37
+ """Meliad wrapper for LM inference."""
38
+
39
+ def __init__(self, vocab_path: str, load_dir: str, mode='beam_search'):
40
+ self.vocab = t5.data.SentencePieceVocabulary(vocab_path)
41
+
42
+ # This task won't be pulling from a dataset.
43
+ def null_iter_fn() -> None:
44
+ return None
45
+
46
+ process_summaries_f = inference_utils.models.process_summaries_function(
47
+ self.vocab
48
+ )
49
+
50
+ trainer = inference_utils.training_loop.Trainer(
51
+ get_training_dataset_iterator=null_iter_fn,
52
+ get_test_dataset_iterator=None,
53
+ pretty_print_input_function=None,
54
+ process_summaries_function=process_summaries_f,
55
+ load_dir=load_dir,
56
+ workdir='', # Don't log or save checkpoints.
57
+ replicate_mode=False,
58
+ ) # Run on a single device at batch size 1.
59
+ self.trainer = trainer
60
+
61
+ # Create and initialize the model.
62
+ (tstate, _, imodel, prngs) = trainer.initialize_model()
63
+ self.imodel = imodel
64
+ self.batch_size = imodel.task_config.batch_size
65
+
66
+ self.n = imodel.num_heads
67
+ self.h = imodel.head_size
68
+
69
+ # Create an inference task.
70
+ writers = {}
71
+ self.task = trainer.create_training_task(mode, imodel, prngs, writers) # pylint: disable=too-many-function-args
72
+
73
+ # Register any additional actions.
74
+ # Actions are cleared first for use with colab.
75
+ inference_utils.training_loop.clear_interstep_callbacks()
76
+ inference_utils.training_loop.register_interstep_callbacks()
77
+ self.tstate = tstate
78
+
79
+ # some default parameters.
80
+ eos = [0] * 1024
81
+ for idx in self.encode_list(['.', ';']):
82
+ eos[idx] = 1
83
+
84
+ self.eos = np.array(eos, dtype=np.bfloat16)
85
+ self.mask = jax.numpy.ones([1024], dtype=np.bfloat16)
86
+
87
+ def decode(self, ids: list[int]) -> str:
88
+ return self.vocab.decode(ids)
89
+
90
+ def decode_list(self, tokens: list[int]) -> list[str]:
91
+ return [self.decode([tok]) for tok in tokens]
92
+
93
+ def encode(self, inputs_str: str) -> list[int]:
94
+ return self.vocab.encode(inputs_str)
95
+
96
+ def encode_list(self, inputs_strs: list[str]) -> list[int]:
97
+ result = [self.vocab.encode(x) for x in inputs_strs]
98
+ assert all([len(x) == 1 for x in result]), [
99
+ self.decode(x) for x in result if len(x) != 1
100
+ ]
101
+ return [x[0] for x in result]
102
+
103
+ def call(
104
+ self,
105
+ inputs: np.ndarray,
106
+ dstate: tuple[dict[str, np.ndarray], ...] = None,
107
+ eos: np.ndarray = None,
108
+ mask: np.ndarray = None,
109
+ ) -> MetricsOutput:
110
+ """Call the meliad model."""
111
+ batch_size, length = inputs.shape
112
+ inputs = jax.numpy.pad(inputs, [(0, 0), (0, 1024 - length)])
113
+
114
+ if eos is None:
115
+ eos = self.eos
116
+ if mask is None:
117
+ mask = self.mask
118
+
119
+ x = {'targets': inputs, 'length': length, 'eos': eos, 'mask': mask}
120
+
121
+ if dstate is not None:
122
+ x['start_of_sequence'] = jax.numpy.array([False] * batch_size)
123
+ else:
124
+ dstate = tuple(
125
+ [{ # this dummy value will never be used.
126
+ 'current_index': np.array([0] * batch_size, dtype=np.int32),
127
+ 'keys': np.zeros(
128
+ (batch_size, 2048, self.n, self.h), dtype=np.bfloat16
129
+ ),
130
+ 'values': np.zeros(
131
+ (batch_size, 2048, self.n, self.h), dtype=np.bfloat16
132
+ ),
133
+ 'recurrent_kvq': None,
134
+ 'relative_position_bias': np.zeros(
135
+ (batch_size, self.n, 1, 1024), dtype=np.bfloat16
136
+ ),
137
+ }]
138
+ * 12
139
+ )
140
+ x['start_of_sequence'] = jax.numpy.array([True] * batch_size)
141
+
142
+ x['dstate'] = dstate
143
+ _, metrics_np = self.task.run_step(self.tstate, x, 0)
144
+ return metrics_np
145
+
146
+ def beam_decode(
147
+ self,
148
+ inputs: str,
149
+ eos_tokens: np.ndarray = None,
150
+ mask_tokens: np.ndarray = None,
151
+ dstate: dict[str, np.ndarray] = None,
152
+ ) -> MetricsOutput:
153
+ """Beam search."""
154
+ inputs = jax.numpy.array([self.vocab.encode(inputs)] * self.batch_size)
155
+
156
+ eos = self.eos
157
+ if eos_tokens is not None:
158
+ eos_ids = self.encode_list(eos_tokens)
159
+ eos = np.array(
160
+ [1 if idx in eos_ids else 0 for idx in range(1024)], dtype=np.bfloat16
161
+ ).reshape((1, 1, 1024))
162
+
163
+ mask = self.mask
164
+ if mask_tokens is not None:
165
+ mask_ids = self.encode_list(mask_tokens)
166
+ mask = np.array(
167
+ [0 if idx in mask_ids else 1 for idx in range(1024)],
168
+ dtype=np.bfloat16,
169
+ ).reshape((1, 1, 1024))
170
+
171
+ metrics_np = self.call(inputs, dstate=dstate, eos=eos, mask=mask)
172
+
173
+ finished_seqs = metrics_np['finished_seqs']
174
+ finished_scores = metrics_np['finished_scores']
175
+
176
+ seqs = []
177
+ scores = []
178
+ for seq, score in zip(finished_seqs, finished_scores):
179
+ seq = self.decode(seq[1:])
180
+ seqs.append(seq)
181
+ scores.append(score)
182
+
183
+ return {
184
+ 'finished_seqs': finished_seqs,
185
+ 'finished_scores': finished_scores,
186
+ 'seqs_str': seqs,
187
+ 'scores': scores,
188
+ 'dstate': metrics_np['dstate'],
189
+ }