Hukuna's picture
Upload 221 files
ce7bf5b verified
raw
history blame
8.2 kB
from collections import Counter
from itertools import product
import numpy as np
import pytest
import torch
from torch.nn import functional as F
from chroma.layers.structure.potts import (
GraphPotts,
compute_potts_energy,
fold_symmetry,
sample_potts,
)
def test_graphpotts():
# Testing symmetry
# Create non-symmetric Potts model and symmetrize using serial or not
potts = GraphPotts(128, 128, 20, symmetric_J=False)
node_h = torch.rand(1, 3, 128)
edge_h = torch.rand(1, 3, 2, 128)
edge_idx = torch.tensor([[[1, 2], [0, 2], [0, 1]]])
mask_i = torch.ones(1, 3)
mask_ij = torch.ones(1, 3, 2)
h, J = potts(node_h, edge_h, edge_idx, mask_i, mask_ij)
assert (
potts._symmetrize_J(J, edge_idx, mask_ij)
!= potts._symmetrize_J_serial(J, edge_idx, mask_ij)
).sum().detach().numpy() == 0
mask_ij = torch.tensor([[[1, 1], [1, 0], [1, 0]]])
h, J = potts(node_h, edge_h, edge_idx, mask_i, mask_ij)
assert (
potts._symmetrize_J(J, edge_idx, mask_ij)
!= potts._symmetrize_J_serial(J, edge_idx, mask_ij)
).sum().detach().numpy() == 0
def test_symmetry_folding():
N, Q = 12, 3
symmetry_order = 3
N_au = N // symmetry_order
# Testing symmetry
mask_i = torch.ones(1, N)
mask_ij = (1.0 - torch.eye(N))[None, ...]
h = torch.randn([1, N, Q])
J = torch.randn([1, N, N, Q, Q])
J = J + J.permute([0, 2, 1, 4, 3])
# J = torch.eye(Q)[None,None,None,...].expand([1, N, N, Q, Q])
J = J * mask_ij[..., None, None]
edge_idx = torch.arange(N).long()[None, None, :].expand([1, N, N])
h_fold, J_fold, edge_idx_fold, mask_i_fold, mask_ij_fold = fold_symmetry(
symmetry_order, h, J, edge_idx, mask_i, mask_ij, normalize=False
)
# Validate dimensions
assert tuple(h_fold.shape) == (1, N_au, Q)
assert tuple(J_fold.shape) == (1, N_au, N_au, Q, Q)
assert tuple(edge_idx_fold.shape) == (1, N_au, N_au)
assert tuple(mask_i_fold.shape) == (1, N_au)
assert tuple(mask_ij_fold.shape) == (1, N_au, N_au)
# Does the folded Potts model return same energies as full?
S_test_fold = torch.randint(high=Q, size=[1, N_au])
S_test = S_test_fold[:, None, :].expand([1, symmetry_order, N_au]).reshape([1, N])
U, U_i = compute_potts_energy(S_test, h, J, edge_idx)
U_fold, U_i_fold = compute_potts_energy(S_test_fold, h_fold, J_fold, edge_idx_fold)
assert torch.allclose(U, U_fold)
@pytest.mark.parametrize("proposal", ["dlmc", "chromatic"])
def test_potts_mcmc(proposal, debug=False):
"""MCMC test for Chromatic Gibbs sampling."""
# Build a test, fully connected Potts model
if debug:
# Heavy duty sampling with large state space
N = 5
q = 4
num_sweeps = 1000
num_chains = 1000
rtol = 0.05
else:
# Quick and dirty small state space
N = 3
q = 3
num_sweeps = 200
num_chains = 1000
rtol = 0.1
beta = 0.1
warmup_fraction = 0.1
torch.manual_seed(1)
mask_i = torch.ones([1, N]).float()
mask_ij = (1 - torch.eye(N))[None, ...].float()
edge_idx = torch.arange(N)[None, None, :].expand([1, N, N])
h = beta * torch.randn([1, N, q])
J = beta * torch.randn([1, N, N, q, q])
J = mask_ij[..., None, None] * (J + J.permute([0, 2, 1, 4, 3])) / np.sqrt(2)
# Enumerate all of sequence space
alphabet = "ABCDEFGHIJK"[:q]
sequences = ["".join(x) for x in product(alphabet, repeat=N)]
S_exact = torch.Tensor(
[[alphabet.index(s) for s in seq] for seq in sequences]
).long()
print(f"Enumerated {len(sequences)} sequences")
if torch.cuda.is_available():
device = "cuda"
h = h.to(device)
J = J.to(device)
edge_idx = edge_idx.to(device)
mask_i = mask_i.to(device)
mask_ij = mask_ij.to(device)
S_exact = S_exact.to(device)
# Compute exact distribution over sequence space
B = S_exact.shape[0]
h_expand = h.expand([B, -1, -1])
J_expand = J.expand([B, -1, -1, -1, -1])
edge_idx_expand = edge_idx.expand([B, -1, -1])
mask_i_expand = mask_i.expand([B, -1])
mask_ij_expand = mask_ij.expand([B, -1, -1])
U, _ = compute_potts_energy(S_exact, h_expand, J_expand, edge_idx_expand)
p_exact = F.softmax(-U, -1).tolist()
# Estimate distribution from sampled sequences
h_expand = h.expand([num_chains, -1, -1])
J_expand = J.expand([num_chains, -1, -1, -1, -1])
edge_idx_expand = edge_idx.expand([num_chains, -1, -1])
mask_i_expand = mask_i.expand([num_chains, -1])
mask_ij_expand = mask_ij.expand([num_chains, -1, -1])
S, U, S_trajectory, U_trajectory = sample_potts(
h_expand,
J_expand,
edge_idx_expand,
mask_i_expand,
mask_ij_expand,
num_sweeps=num_sweeps,
proposal=proposal,
rejection_step=True,
verbose=True,
return_trajectory=True,
)
if warmup_fraction is not None:
S_trajectory = S_trajectory[int(warmup_fraction * len(S_trajectory)) :]
S_samples = torch.cat(S_trajectory, 0)
U_trajectory = torch.stack(U_trajectory, 1).cpu().data.numpy()
S_samples = S_samples.cpu().data.numpy()
sample_counts = Counter(["".join([alphabet[c] for c in s]) for s in S_samples])
p_sample = [sample_counts[seq] / S_samples.shape[0] for seq in sequences]
if debug:
from matplotlib import pyplot as plt
plt.figure(figsize=(6, 3))
plt.subplot(1, 2, 1)
plt.plot(p_exact, p_sample, "k.")
plt.grid()
plt.axis("square")
plt.xlabel("Probability, exact enumeration")
plt.ylabel("Sampling frequencey (MCMC)")
plt.title(f"Random Potts model over {q}^{N} sequences")
plt.subplot(1, 2, 2)
plt.plot(U_trajectory[0, :])
plt.xlabel("Iterations")
plt.ylabel("Energy")
plt.tight_layout()
plt.show()
# The frequencies of states visited via MCMC should reproduce their
# exact probabilities (via enumeration) within rtol percent error
assert np.allclose(p_sample, p_exact, rtol=rtol)
def debug_potts_2D():
"""Debug test for Potts model"""
N = 100
q = 4
num_sites = N * N
mask_i = torch.ones([1, N]).float()
ix = torch.arange(num_sites).long()
# Build 2D lattice topology
edge_idx = torch.stack([ix + 1, ix - 1, ix + N, ix - N], -1)
mask_ij = torch.ones_like(edge_idx).float()[None, :, :]
edge_idx = torch.remainder(edge_idx, num_sites)[None, :, :].long()
# Ferromagnetic parameters
h = torch.zeros([1, num_sites, q])
h[:, :, 0] = h[:, :, 0]
mask_J = mask_ij[:, :, :, None, None] * torch.eye(q)[None, None, None, :, :]
if torch.cuda.is_available():
device = "cuda"
h = h.to(device)
edge_idx = edge_idx.to(device)
mask_J = mask_J.to(device)
mask_ij = mask_ij.to(device)
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
temp_range = (1.2, 0.8)
plt.figure(figsize=(5, 5), dpi=600)
_, _, S_trajectory, U_trajectory = sample_potts(
h,
-mask_J,
edge_idx,
mask_i,
mask_ij,
num_sweeps=10000,
verbose=True,
return_trajectory=True,
S=None,
annealing_fraction=1.0,
temperature_init=1.2,
temperature=0.8,
)
# Define a function to update the plot for each frame
num_frames = len(S_trajectory)
temps = np.linspace(temp_range[0], temp_range[1], len(S_trajectory))
betas = 1.0 / temps
def update(frame):
plt.clf() # Clear the previous frame
plt.pcolor(S_trajectory[frame].cpu().data.numpy().reshape([N, N]), cmap="tab10")
plt.clim([0, 10])
plt.axis("square")
plt.axis("off")
plt.title(f"Beta = {betas[frame]:0.2f}")
print(frame)
# Create a figure and set the number of frames
fig = plt.figure(figsize=(4, 4), dpi=300)
animation = FuncAnimation(fig, update, frames=num_frames, interval=1000 / 60)
animation.save("potts.mp4", writer="ffmpeg")
return