HumzaAli's picture
Create app.py
4638659 verified
raw
history blame
1.22 kB
import tensorflow as tf
from tensorflow.keras.models import load_model
import gradio as gr
# Class names
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck']
# Load trained model
model = load_model("ResNet50_cifar10_best_fr.h5")
# Define the preprocessing function
def preprocess_image(img):
img = tf.image.resize(img, (32, 32))
img = img / 255.0
img = tf.expand_dims(img, axis=0)
return img
# Define the postprocessing function
def process_prediction(prediction):
predicted_class_index = int(prediction.argmax())
predicted_class_name = class_names[predicted_class_index]
return predicted_class_name
# Define the prediction function
def predict_cifar10(img):
preprocessed_img = preprocess_image(img)
prediction = model.predict(preprocessed_img)
return process_prediction(prediction)
# Create Gradio interface
iface = gr.Interface(
fn=predict_cifar10,
inputs=[gr.Image(label="Input Image")],
outputs=[gr.Label(label="Predicted Class")],
title="CIFAR-10 Image Classifier",
description="Upload an image to classify it using a CIFAR-10 model."
)
# Launch the interface
iface.launch()