Spaces:
Runtime error
Runtime error
import streamlit as st | |
from st_audiorec import st_audiorec | |
import matplotlib.pyplot as plt | |
import sounddevice as sd | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torchaudio | |
from scipy.io import wavfile | |
# MODEL LOADING and INITIALISATION | |
# model = torch.jit.load("snorenetv1_small.ptl") | |
# model.eval() | |
# Session state | |
if 'text' not in st.session_state: | |
st.session_state['text'] = 'Listening...' | |
st.session_state['run'] = False | |
# Audio parameters | |
st.sidebar.header('Audio Parameters') | |
FRAMES_PER_BUFFER = int(st.sidebar.text_input('Frames per buffer', 3200)) | |
FORMAT = 'audio/wav' | |
CHANNELS = 1 | |
RATE = int(st.sidebar.text_input('Rate', 16000)) | |
# Open an audio stream | |
monitoring = False | |
audio_data = [] | |
def start_monitoring(): | |
global monitoring | |
st.session_state['run'] = True | |
monitoring = True | |
def stop_monitoring(): | |
global monitoring | |
st.session_state['run'] = False | |
monitoring = False | |
st.title('🎙️ Real-Time Snore Detection App') | |
with st.expander('About this App'): | |
st.markdown(''' | |
This streamlit app from Hypermind Labs Helps users detect | |
how much they are snoring during their sleep. | |
''') | |
wav_audio_data = st_audiorec() | |
if wav_audio_data is not None: | |
output_filename = "audio_data.wav" | |
audio_data_bytes = wav_audio_data.decode('latin-1') | |
np_wav = np.frombuffer(audio_data_bytes, dtype=np.int16) | |
wavfile.write(output_filename, RATE, np_wav) | |
loaded_data = torchaudio.load("audio_data.wav") | |
st.write(loaded_data.shape) | |
# PERCENTAGE OF SNORING PLOT | |
# waveform, sample_rate = torchaudio.load('test/0_10.wav') | |
# resampler = T.Resample(sample_rate, RESAMPLE_RATE, dtype=waveform.dtype) | |
# signal = resampler(waveform) | |
# signal = torch.mean(signal, dim=0, keepdim=True) | |
# ptl_model(signal) | |
# snore = 0 | |
# other = 0 | |
# for row in model: | |
# for element in row: | |
# if element > 0.5: | |
# snore += 1 | |
# else: | |
# other += 1 | |
# total = snore + other | |
# snore_percentage = (snore / total) * 100 | |
# other_percentage = (other / total) * 100 | |
# categories = ["Snore", "Other"] | |
# percentages = [snore_percentage, other_percentage] | |
# plt.figure(figsize=(8, 4)) | |
# plt.barh(categories, percentages, color=['#ff0033', '#00ffee']) | |
# plt.xlabel('Percentage') | |
# plt.title('Percentage of "Snore" and "Other"') | |
# plt.xlim(0, 100) | |
# for i, percentage in enumerate(percentages): | |
# plt.text(percentage, i, f' {percentage:.2f}%', va='center') | |
# st.pyplot(plt) | |