Spaces:
Runtime error
Runtime error
import streamlit as st | |
import time | |
import PyPDF2 # Import PyPDF2 for PDF text extraction | |
from openai import OpenAI | |
from docx import Document | |
from docx.shared import Pt | |
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT | |
import os | |
# Set the page configuration | |
st.set_page_config(page_title="Report Generation AI") | |
# Title and caption | |
st.title("AI Report Generator") | |
st.caption("Generate Professional Reports from PDF Documents") | |
# Sidebar for API Key input | |
with st.sidebar: | |
OPENAI_API_KEY = st.text_input("Enter your Access Key", type="password") | |
# Check for valid API key | |
if OPENAI_API_KEY: | |
client = OpenAI(api_key=OPENAI_API_KEY) | |
else: | |
st.error("Please enter your Access Key to continue.") | |
st.stop() | |
ASSISTANT_ID = "asst_d68xqxiRtvYkmewBPugwZaGx" | |
# Initialize session state for chat history | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = [] | |
# Clear chat button above chat input | |
if st.button("Clear Chat", use_container_width=True): | |
st.session_state.messages = [] | |
st.rerun() | |
# Display chat history | |
for message in st.session_state.messages: | |
role, content = message["role"], message["content"] | |
st.chat_message(role).write(content) | |
# Process user input | |
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) | |
if uploaded_file: | |
# Read the PDF file using PyPDF2 | |
pdf_reader = PyPDF2.PdfReader(uploaded_file) | |
full_text = "" | |
# Extract text from each page | |
for page_num in range(len(pdf_reader.pages)): | |
page = pdf_reader.pages[page_num] | |
full_text += page.extract_text() | |
st.write("Text extracted from PDF:") | |
st.text_area("Extracted Text", full_text, height=300) | |
# Process user input for assistant | |
prompt = f"Please analyze the following text from the PDF: {full_text[:1000]}" # Limit to the first 1000 chars for clarity | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
st.chat_message("user").write(prompt) | |
try: | |
# Create a new thread for conversation | |
thread = client.beta.threads.create() | |
thread_id = thread.id | |
# Send user message to OpenAI API | |
client.beta.threads.messages.create( | |
thread_id=thread_id, | |
role="user", | |
content=prompt | |
) | |
# Run the assistant to generate a response | |
run = client.beta.threads.runs.create( | |
thread_id=thread_id, | |
assistant_id=ASSISTANT_ID | |
) | |
# Wait for response | |
while True: | |
run_status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id) | |
if run_status.status == "completed": | |
break | |
time.sleep(1) | |
# Retrieve assistant response | |
messages = client.beta.threads.messages.list(thread_id=thread_id) | |
assistant_message = messages.data[0].content[0].text.value | |
# Display assistant's response | |
st.chat_message("assistant").write(assistant_message) | |
# Store in session state | |
st.session_state.messages.append({"role": "assistant", "content": assistant_message}) | |
# Generate Word (DOCX) file for download | |
doc = Document() | |
# Add a title and style | |
title = doc.add_heading('AI Assistant Report', 0) | |
title.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER # Center align the title | |
run = title.add_run("AI Assistant Report") | |
run.bold = True | |
run.font.size = Pt(18) | |
# Add Executive Summary | |
doc.add_heading('Executive Summary', level=1) | |
doc.add_paragraph("Based on the provided PDF content, the analysis has been carried out. " | |
"Key insights and analysis are provided below, along with a variance analysis " | |
"and considerations for future actions.") | |
# Step 1: Text Analysis | |
doc.add_heading('Step 1: Text Analysis', level=1) | |
# Create a table for the extracted data | |
table = doc.add_table(rows=1, cols=6) | |
hdr_cells = table.rows[0].cells | |
hdr_cells[0].text = 'Sales (2025)' | |
hdr_cells[1].text = 'Sales (2024)' | |
hdr_cells[2].text = 'Sales Variance (%)' | |
hdr_cells[3].text = 'Gross Profit (2025)' | |
hdr_cells[4].text = 'Gross Profit (2024)' | |
hdr_cells[5].text = 'Gross Profit Variance (%)' | |
# Add sample row data (the actual data should be dynamically inserted here from the PDF) | |
row = table.add_row().cells | |
row[0].text = "1,392" | |
row[1].text = "1,400" | |
row[2].text = "-0.5" | |
row[3].text = "200" | |
row[4].text = "207" | |
row[5].text = "-3.0" | |
# Step 2: Assistant's Analysis | |
doc.add_heading('Step 2: Assistant Analysis', level=1) | |
doc.add_paragraph(f"The AI Assistant's insights are:\n{assistant_message}") | |
# Add tables for key insights like sales, gross profit, and variance analysis | |
doc.add_heading('Key Insights and Trends', level=2) | |
doc.add_paragraph("Here is a summary of the analysis based on the provided data:") | |
# Add another table for detailed analysis if necessary | |
detailed_table = doc.add_table(rows=1, cols=3) | |
detailed_hdr = detailed_table.rows[0].cells | |
detailed_hdr[0].text = 'Month' | |
detailed_hdr[1].text = 'Sales (ZAR)' | |
detailed_hdr[2].text = 'Gross Profit (ZAR)' | |
# Add sample data for detailed insights | |
month_data = [ | |
("February 2025", "1,392,000", "200,000"), | |
("February 2024", "1,400,000", "207,000"), | |
("Budgeted February 2025", "1,498,000", "221,000") | |
] | |
for month, sales, profit in month_data: | |
row = detailed_table.add_row().cells | |
row[0].text = month | |
row[1].text = sales | |
row[2].text = profit | |
# Style Table Text (bold for headings, adjust font size) | |
for cell in hdr_cells: | |
cell.paragraphs[0].runs[0].bold = True | |
cell.paragraphs[0].runs[0].font.size = Pt(10.5) | |
# Adjust font size and add bold to data cells | |
for row in table.rows: | |
for cell in row.cells: | |
cell.paragraphs[0].runs[0].font.size = Pt(10.5) | |
# Saving the DOCX file | |
word_filename = "AI_Report_Formatted.docx" | |
doc.save(word_filename) | |
# Provide download link | |
with open(word_filename, "rb") as file: | |
st.download_button( | |
label="Download the Report", | |
data=file.read(), | |
file_name=word_filename, | |
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document" | |
) | |
except Exception as e: | |
st.error(f"Error processing the chat: {str(e)}") | |