IAMTFRMZA's picture
app.py
3ee6389 verified
import streamlit as st
import time
import PyPDF2 # Import PyPDF2 for PDF text extraction
from openai import OpenAI
from docx import Document
from docx.shared import Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
import os
# Set the page configuration
st.set_page_config(page_title="Report Generation AI")
# Title and caption
st.title("AI Report Generator")
st.caption("Generate Professional Reports from PDF Documents")
# Sidebar for API Key input
with st.sidebar:
OPENAI_API_KEY = st.text_input("Enter your Access Key", type="password")
# Check for valid API key
if OPENAI_API_KEY:
client = OpenAI(api_key=OPENAI_API_KEY)
else:
st.error("Please enter your Access Key to continue.")
st.stop()
ASSISTANT_ID = "asst_d68xqxiRtvYkmewBPugwZaGx"
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state["messages"] = []
# Clear chat button above chat input
if st.button("Clear Chat", use_container_width=True):
st.session_state.messages = []
st.rerun()
# Display chat history
for message in st.session_state.messages:
role, content = message["role"], message["content"]
st.chat_message(role).write(content)
# Process user input
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"])
if uploaded_file:
# Read the PDF file using PyPDF2
pdf_reader = PyPDF2.PdfReader(uploaded_file)
full_text = ""
# Extract text from each page
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
full_text += page.extract_text()
st.write("Text extracted from PDF:")
st.text_area("Extracted Text", full_text, height=300)
# Process user input for assistant
prompt = f"Please analyze the following text from the PDF: {full_text[:1000]}" # Limit to the first 1000 chars for clarity
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
try:
# Create a new thread for conversation
thread = client.beta.threads.create()
thread_id = thread.id
# Send user message to OpenAI API
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=prompt
)
# Run the assistant to generate a response
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=ASSISTANT_ID
)
# Wait for response
while True:
run_status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if run_status.status == "completed":
break
time.sleep(1)
# Retrieve assistant response
messages = client.beta.threads.messages.list(thread_id=thread_id)
assistant_message = messages.data[0].content[0].text.value
# Display assistant's response
st.chat_message("assistant").write(assistant_message)
# Store in session state
st.session_state.messages.append({"role": "assistant", "content": assistant_message})
# Generate Word (DOCX) file for download
doc = Document()
# Add a title and style
title = doc.add_heading('AI Assistant Report', 0)
title.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER # Center align the title
run = title.add_run("AI Assistant Report")
run.bold = True
run.font.size = Pt(18)
# Add Executive Summary
doc.add_heading('Executive Summary', level=1)
doc.add_paragraph("Based on the provided PDF content, the analysis has been carried out. "
"Key insights and analysis are provided below, along with a variance analysis "
"and considerations for future actions.")
# Step 1: Text Analysis
doc.add_heading('Step 1: Text Analysis', level=1)
# Create a table for the extracted data
table = doc.add_table(rows=1, cols=6)
hdr_cells = table.rows[0].cells
hdr_cells[0].text = 'Sales (2025)'
hdr_cells[1].text = 'Sales (2024)'
hdr_cells[2].text = 'Sales Variance (%)'
hdr_cells[3].text = 'Gross Profit (2025)'
hdr_cells[4].text = 'Gross Profit (2024)'
hdr_cells[5].text = 'Gross Profit Variance (%)'
# Add sample row data (the actual data should be dynamically inserted here from the PDF)
row = table.add_row().cells
row[0].text = "1,392"
row[1].text = "1,400"
row[2].text = "-0.5"
row[3].text = "200"
row[4].text = "207"
row[5].text = "-3.0"
# Step 2: Assistant's Analysis
doc.add_heading('Step 2: Assistant Analysis', level=1)
doc.add_paragraph(f"The AI Assistant's insights are:\n{assistant_message}")
# Add tables for key insights like sales, gross profit, and variance analysis
doc.add_heading('Key Insights and Trends', level=2)
doc.add_paragraph("Here is a summary of the analysis based on the provided data:")
# Add another table for detailed analysis if necessary
detailed_table = doc.add_table(rows=1, cols=3)
detailed_hdr = detailed_table.rows[0].cells
detailed_hdr[0].text = 'Month'
detailed_hdr[1].text = 'Sales (ZAR)'
detailed_hdr[2].text = 'Gross Profit (ZAR)'
# Add sample data for detailed insights
month_data = [
("February 2025", "1,392,000", "200,000"),
("February 2024", "1,400,000", "207,000"),
("Budgeted February 2025", "1,498,000", "221,000")
]
for month, sales, profit in month_data:
row = detailed_table.add_row().cells
row[0].text = month
row[1].text = sales
row[2].text = profit
# Style Table Text (bold for headings, adjust font size)
for cell in hdr_cells:
cell.paragraphs[0].runs[0].bold = True
cell.paragraphs[0].runs[0].font.size = Pt(10.5)
# Adjust font size and add bold to data cells
for row in table.rows:
for cell in row.cells:
cell.paragraphs[0].runs[0].font.size = Pt(10.5)
# Saving the DOCX file
word_filename = "AI_Report_Formatted.docx"
doc.save(word_filename)
# Provide download link
with open(word_filename, "rb") as file:
st.download_button(
label="Download the Report",
data=file.read(),
file_name=word_filename,
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
)
except Exception as e:
st.error(f"Error processing the chat: {str(e)}")