File size: 7,157 Bytes
ead511a fd85cd0 e35dc50 14a0e81 ead511a 528891b ead511a 528891b 16a0a0c ead511a 16a0a0c ead511a 39ea5ba fd85cd0 16a0a0c ead511a e35dc50 16a0a0c 39ea5ba 16a0a0c ead511a 16a0a0c 41f0a85 16a0a0c 41f0a85 16a0a0c e35dc50 16a0a0c fd85cd0 16a0a0c ead511a 16a0a0c e35dc50 16a0a0c 24c5a32 2bb0e5a 24c5a32 16a0a0c e35dc50 24c5a32 e35dc50 24c5a32 e35dc50 1485585 e35dc50 2bb0e5a e35dc50 2bb0e5a e35dc50 2bb0e5a 14a0e81 b75e8c0 2bb0e5a 1485585 b75e8c0 1485585 b75e8c0 1485585 b75e8c0 1485585 b75e8c0 41f0a85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import streamlit as st
from openai import OpenAI
import time
import os
import re
import pandas as pd
import PyPDF2
from datetime import datetime
from pydub import AudioSegment
from docx import Document
from io import BytesIO
st.set_page_config(page_title="Schlager ContractAi")
st.title("Schlager ContractAi")
st.caption("Chat with your contract or manage meeting minutes")
# Sidebar for API Key input
with st.sidebar:
OPENAI_API_KEY = st.text_input("Enter your C2 Group of Technologies Access Key", type="password")
# Tabs for Contract and Minutes
tab1, tab2 = st.tabs(["Contract", "Minutes"])
SUPPORTED_AUDIO_FORMATS = (".mp3", ".wav", ".m4a")
SUPPORTED_TEXT_FORMATS = (".txt", ".docx", ".csv", ".xlsx", ".pdf")
with tab1:
st.subheader("Contract Chat")
if OPENAI_API_KEY:
client = OpenAI(api_key=OPENAI_API_KEY)
else:
st.error("Please enter your C2 Group of Technologies Access Key to continue.")
st.stop()
ASSISTANT_ID = "asst_rd9h8PfYuOmHbkvOF3RTmVfn"
if "messages" not in st.session_state:
st.session_state["messages"] = []
if st.button("Clear Chat"):
st.session_state["messages"] = []
st.rerun()
for message in st.session_state.messages:
role, content = message["role"], message["content"]
st.chat_message(role).write(content)
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
try:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=prompt
)
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=ASSISTANT_ID
)
while True:
run_status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if run_status.status == "completed":
break
time.sleep(1)
messages = client.beta.threads.messages.list(thread_id=thread_id)
assistant_message = messages.data[0].content[0].text.value
st.chat_message("assistant").write(assistant_message)
st.session_state.messages.append({"role": "assistant", "content": assistant_message})
except Exception as e:
st.error(f"Error: {str(e)}")
with tab2:
st.subheader("Minutes")
if "generated_minutes" not in st.session_state:
st.session_state["generated_minutes"] = ""
uploaded_files = st.file_uploader("Upload meeting minutes (PDF/DOCX/Audio)",
type=["pdf", "docx", "mp3", "wav", "m4a"],
accept_multiple_files=True)
if uploaded_files:
st.write("### Uploaded Files:")
for uploaded_file in uploaded_files:
st.write(f"- {uploaded_file.name}")
combined_text = ""
for uploaded_file in uploaded_files:
if uploaded_file.name.lower().endswith(SUPPORTED_AUDIO_FORMATS):
audio = AudioSegment.from_file(uploaded_file)
temp_audio_path = "temp_audio.mp3"
audio.export(temp_audio_path, format="mp3")
with open(temp_audio_path, "rb") as audio_file:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file
)
combined_text += transcription.text + "\n"
os.remove(temp_audio_path)
else:
if uploaded_file.name.endswith(".docx"):
doc = Document(uploaded_file)
combined_text += "\n".join([para.text for para in doc.paragraphs])
elif uploaded_file.name.endswith(".pdf"):
pdf_reader = PyPDF2.PdfReader(uploaded_file)
combined_text += "\n".join([page.extract_text() for page in pdf_reader.pages if page.extract_text()])
if combined_text:
st.write("### Transcribed and Extracted Text:")
st.text_area("Meeting Transcript", combined_text, height=300)
if st.button("Generate Meeting Minutes"):
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": "You are an AI assistant that generates professional meeting minutes."},
{"role": "user", "content": f"Summarize the following into structured meeting minutes:\n{combined_text}"}
]
)
st.session_state["generated_minutes"] = response.choices[0].message.content
st.write("### Meeting Minutes:")
st.text_area("Generated Minutes", st.session_state["generated_minutes"], height=300)
if st.session_state["generated_minutes"]:
doc = Document()
doc.add_paragraph(st.session_state["generated_minutes"])
docx_io = BytesIO()
doc.save(docx_io)
docx_io.seek(0)
st.download_button(label="Download Meeting Minutes",
data=docx_io,
file_name="Meeting_Minutes.docx",
mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document")
if st.button("Contract Analysis"):
analysis_prompt = "Analyse this data and provide any insights, risks and relevant data based on the contract that we need to be aware of.\n" + st.session_state["generated_minutes"]
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=analysis_prompt
)
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=ASSISTANT_ID
)
while True:
run_status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if run_status.status == "completed":
break
time.sleep(1)
messages = client.beta.threads.messages.list(thread_id=thread_id)
analysis_output = messages.data[0].content[0].text.value
st.write("### Contract Analysis Output:")
st.text_area("Contract Analysis", analysis_output, height=300) |