File size: 19,946 Bytes
2a59fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
from typing import Any, Dict, List, Optional, Tuple, Union
from einops import rearrange, repeat
import numpy as np
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock
from ..basics import zero_module, conv_nd
from ..modules.attention import SpatialTransformer, TemporalTransformer
from ..common import checkpoint

from diffusers import __version__
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.utils import (
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
    logging,
    _get_model_file,
    _add_variant
)
from omegaconf import ListConfig, DictConfig, OmegaConf


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class ControlNetConditioningEmbedding(nn.Module):
    """
    Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
    [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
    training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
    convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
    (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
    model) to encode image-space conditions ... into feature maps ..."
    """

    def __init__(
        self,
        conditioning_embedding_channels: int,
        conditioning_channels: int = 3,
        block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
    ):
        super().__init__()

        self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)

        self.blocks = nn.ModuleList([])

        for i in range(len(block_out_channels) - 1):
            channel_in = block_out_channels[i]
            channel_out = block_out_channels[i + 1]
            self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
            self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))

        self.conv_out = zero_module(
            nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
        )

    def forward(self, conditioning):
        embedding = self.conv_in(conditioning)
        embedding = F.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = F.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding


class LayerControlNet(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0.0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        context_dim=None,
        use_scale_shift_norm=False,
        resblock_updown=False,
        num_heads=-1,
        num_head_channels=-1,
        transformer_depth=1,
        use_linear=False,
        use_checkpoint=False,
        temporal_conv=False,
        tempspatial_aware=False,
        temporal_attention=True,
        use_relative_position=True,
        use_causal_attention=False,
        temporal_length=None,
        addition_attention=False,
        temporal_selfatt_only=True,
        image_cross_attention=False,
        image_cross_attention_scale_learnable=False,
        default_fps=4,
        fps_condition=False,
        ignore_noisy_latents=True,
        condition_channels={},
        control_injection_mode='add',
        use_vae_for_trajectory=False,
    ):
        super().__init__()
        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.temporal_attention = temporal_attention
        time_embed_dim = model_channels * 4
        self.use_checkpoint = use_checkpoint
        temporal_self_att_only = True
        self.addition_attention = addition_attention
        self.temporal_length = temporal_length
        self.image_cross_attention = image_cross_attention
        self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
        self.default_fps = default_fps
        self.fps_condition = fps_condition
        self.ignore_noisy_latents = ignore_noisy_latents
        assert len(condition_channels) > 0, 'Condition types must be specified'
        self.condition_channels = condition_channels
        self.control_injection_mode = control_injection_mode
        self.use_vae_for_trajectory = use_vae_for_trajectory

        ## Time embedding blocks
        self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.time_embed = TimestepEmbedding(model_channels, time_embed_dim)

        if fps_condition:
            self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim)
            nn.init.zeros_(self.fps_embedding.linear_2.weight)
            nn.init.zeros_(self.fps_embedding.linear_2.bias)

        if "motion_score" in condition_channels:
            if control_injection_mode == 'add':
                self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], model_channels, 3, padding=1))
            elif control_injection_mode == 'concat':
                self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], condition_channels["motion_score"], 3, padding=1))
            else:
                raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")
        if "sketch" in condition_channels:
            if control_injection_mode == 'add':
                self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], model_channels, 3, padding=1))
            elif control_injection_mode == 'concat':
                self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], condition_channels["sketch"], 3, padding=1))
            else:
                raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")
        if "trajectory" in condition_channels:
            if control_injection_mode == 'add':
                if use_vae_for_trajectory:
                    self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], model_channels, 3, padding=1))
                else:
                    self.trajectory_embedding = ControlNetConditioningEmbedding(model_channels, condition_channels["trajectory"])
            elif control_injection_mode == 'concat':
                if use_vae_for_trajectory:
                    self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], condition_channels["trajectory"], 3, padding=1))
                else:
                    self.trajectory_embedding = ControlNetConditioningEmbedding(condition_channels["trajectory"], condition_channels["trajectory"])
            else:
                raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")

        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
            ]
        )

        if self.addition_attention:
            self.init_attn = TimestepEmbedSequential(
                TemporalTransformer(
                    model_channels,
                    n_heads=8,
                    d_head=num_head_channels,
                    depth=transformer_depth,
                    context_dim=context_dim,
                    use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
                    causal_attention=False, relative_position=use_relative_position,
                    temporal_length=temporal_length
                )
            )

        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(ch, time_embed_dim, dropout,
                        out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
                        use_temporal_conv=temporal_conv
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    layers.append(
                        SpatialTransformer(ch, num_heads, dim_head,
                            depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
                            use_checkpoint=use_checkpoint, disable_self_attn=False,
                            video_length=temporal_length, image_cross_attention=self.image_cross_attention,
                            image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
                        )
                    )
                    if self.temporal_attention:
                        layers.append(
                            TemporalTransformer(ch, num_heads, dim_head,
                                depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
                                use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
                                causal_attention=use_causal_attention, relative_position=use_relative_position,
                                temporal_length=temporal_length
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))

            if level < len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(ch, time_embed_dim, dropout,
                            out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True
                        )
                        if resblock_updown
                        else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
                    )
                )
                ch = out_ch
                ds *= 2

    def forward(
        self,
        noisy_latents,
        timesteps,
        context_text,
        context_img=None,
        fps=None,
        layer_latents=None,     # [b, n_layer, t, c, h, w]
        layer_latent_mask=None, # [b, n_layer, t, 1, h, w]
        motion_scores=None,     # [b, n_layer]
        sketch=None,            # [b, n_layer, t, c, h, w]
        trajectory=None,        # [b, n_layer, t, c, h, w]
    ):
        if self.ignore_noisy_latents:
            noisy_latents_shape = list(noisy_latents.shape)
            noisy_latents_shape[1] = 0
            noisy_latents = torch.zeros(noisy_latents_shape, device=noisy_latents.device, dtype=noisy_latents.dtype)

        b, _, t, height, width = noisy_latents.shape
        n_layer = layer_latents.shape[1]
        t_emb = self.time_proj(timesteps).type(noisy_latents.dtype)
        emb = self.time_embed(t_emb)

        ## repeat t times for context [(b t) 77 768] & time embedding
        ## check if we use per-frame image conditioning
        if context_img is not None: ## decompose context into text and image
            context_text = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t)
            context_img = repeat(context_img, 'b tl c -> b n tl c', n=n_layer)
            context_img = rearrange(context_img, 'b n (t l) c -> (b n t) l c', t=t)
            context = torch.cat([context_text, context_img], dim=1)
        else:
            context = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t)
        emb = repeat(emb, 'b c -> (b n t) c', n=n_layer, t=t)

        ## always in shape (b n t) c h w, except for temporal layer
        noisy_latents = repeat(noisy_latents, 'b c t h w -> (b n t) c h w', n=n_layer)

        ## combine emb
        if self.fps_condition:
            if fps is None:
                fps = torch.tensor(
                    [self.default_fs] * b, dtype=torch.long, device=noisy_latents.device)
            fps_emb = self.time_proj(fps).type(noisy_latents.dtype)

            fps_embed = self.fps_embedding(fps_emb)
            fps_embed = repeat(fps_embed, 'b c -> (b n t) c', n=n_layer, t=t)
            emb = emb + fps_embed

        ## process conditions
        layer_condition = torch.cat([layer_latents, layer_latent_mask], dim=3)
        layer_condition = rearrange(layer_condition, 'b n t c h w -> (b n t) c h w')
        h = torch.cat([noisy_latents, layer_condition], dim=1)

        if "motion_score" in self.condition_channels:
            motion_condition = repeat(motion_scores, 'b n -> b n t 1 h w', t=t, h=height, w=width)
            motion_condition = torch.cat([motion_condition, layer_latent_mask], dim=3)
            motion_condition = rearrange(motion_condition, 'b n t c h w -> (b n t) c h w')
            motion_condition = self.motion_embedding(motion_condition)
            if self.control_injection_mode == 'concat':
                h = torch.cat([h, motion_condition], dim=1)

        if "sketch" in self.condition_channels:
            sketch_condition = rearrange(sketch, 'b n t c h w -> (b n t) c h w')
            sketch_condition = self.sketch_embedding(sketch_condition)
            if self.control_injection_mode == 'concat':
                h = torch.cat([h, sketch_condition], dim=1)

        if "trajectory" in self.condition_channels:
            traj_condition = rearrange(trajectory, 'b n t c h w -> (b n t) c h w')
            traj_condition = self.trajectory_embedding(traj_condition)
            if self.control_injection_mode == 'concat':
                h = torch.cat([h, traj_condition], dim=1)

        layer_features = []
        for id, module in enumerate(self.input_blocks):
            h = module(h, emb, context=context, batch_size=b*n_layer)
            if id == 0:
                if self.control_injection_mode == 'add':
                    if "motion_score" in self.condition_channels:
                        h = h + motion_condition
                    if "sketch" in self.condition_channels:
                        h = h + sketch_condition
                    if "trajectory" in self.condition_channels:
                        h = h + traj_condition
                if self.addition_attention:
                    h = self.init_attn(h, emb, context=context, batch_size=b*n_layer)
            if SpatialTransformer in [type(m) for m in module]:
                layer_features.append(rearrange(h, '(b n t) c h w -> b n t c h w', b=b, n=n_layer))

        return layer_features

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, layer_controlnet_additional_kwargs={}, **kwargs):
        cache_dir = kwargs.pop("cache_dir", None)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
        revision = kwargs.pop("revision", None)
        subfolder = kwargs.pop("subfolder", None)
        variant = kwargs.pop("variant", None)
        use_safetensors = kwargs.pop("use_safetensors", None)

        allow_pickle = False
        if use_safetensors is None:
            use_safetensors = True
            allow_pickle = True

        # Load config if we don't provide a configuration
        config_path = pretrained_model_name_or_path

        user_agent = {
            "diffusers": __version__,
            "file_type": "model",
            "framework": "pytorch",
        }

        # load config
        config, unused_kwargs, commit_hash = cls.load_config(
            config_path,
            cache_dir=cache_dir,
            return_unused_kwargs=True,
            return_commit_hash=True,
            force_download=force_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            subfolder=subfolder,
            user_agent=user_agent,
            **kwargs,
        )

        for key, value in layer_controlnet_additional_kwargs.items():
            if isinstance(value, (ListConfig, DictConfig)):
                config[key] = OmegaConf.to_container(value, resolve=True)
            else:
                config[key] = value

        # load model
        model_file = None
        if use_safetensors:
            try:
                model_file = _get_model_file(
                    pretrained_model_name_or_path,
                    weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    subfolder=subfolder,
                    user_agent=user_agent,
                    commit_hash=commit_hash,
                )

            except IOError as e:
                logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
                if not allow_pickle:
                    raise
                logger.warning(
                    "Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
                )

        if model_file is None:
            model_file = _get_model_file(
                pretrained_model_name_or_path,
                weights_name=_add_variant(WEIGHTS_NAME, variant),
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
                subfolder=subfolder,
                user_agent=user_agent,
                commit_hash=commit_hash,
            )

        model = cls.from_config(config, **unused_kwargs)
        state_dict = load_state_dict(model_file, variant)

        if state_dict['input_blocks.0.0.weight'].shape[1] != model.input_blocks[0][0].weight.shape[1]:
            state_dict.pop('input_blocks.0.0.weight')

        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
        print(f"LayerControlNet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.")
        return model