Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,946 Bytes
2a59fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
from typing import Any, Dict, List, Optional, Tuple, Union
from einops import rearrange, repeat
import numpy as np
from functools import partial
import torch
from torch import nn
from torch.nn import functional as F
from .unet import TimestepEmbedSequential, ResBlock, Downsample, Upsample, TemporalConvBlock
from ..basics import zero_module, conv_nd
from ..modules.attention import SpatialTransformer, TemporalTransformer
from ..common import checkpoint
from diffusers import __version__
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.model_loading_utils import load_state_dict
from diffusers.utils import (
SAFETENSORS_WEIGHTS_NAME,
WEIGHTS_NAME,
logging,
_get_model_file,
_add_variant
)
from omegaconf import ListConfig, DictConfig, OmegaConf
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class ControlNetConditioningEmbedding(nn.Module):
"""
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
model) to encode image-space conditions ... into feature maps ..."
"""
def __init__(
self,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
):
super().__init__()
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
self.blocks = nn.ModuleList([])
for i in range(len(block_out_channels) - 1):
channel_in = block_out_channels[i]
channel_out = block_out_channels[i + 1]
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
self.conv_out = zero_module(
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
)
def forward(self, conditioning):
embedding = self.conv_in(conditioning)
embedding = F.silu(embedding)
for block in self.blocks:
embedding = block(embedding)
embedding = F.silu(embedding)
embedding = self.conv_out(embedding)
return embedding
class LayerControlNet(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0.0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
context_dim=None,
use_scale_shift_norm=False,
resblock_updown=False,
num_heads=-1,
num_head_channels=-1,
transformer_depth=1,
use_linear=False,
use_checkpoint=False,
temporal_conv=False,
tempspatial_aware=False,
temporal_attention=True,
use_relative_position=True,
use_causal_attention=False,
temporal_length=None,
addition_attention=False,
temporal_selfatt_only=True,
image_cross_attention=False,
image_cross_attention_scale_learnable=False,
default_fps=4,
fps_condition=False,
ignore_noisy_latents=True,
condition_channels={},
control_injection_mode='add',
use_vae_for_trajectory=False,
):
super().__init__()
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.temporal_attention = temporal_attention
time_embed_dim = model_channels * 4
self.use_checkpoint = use_checkpoint
temporal_self_att_only = True
self.addition_attention = addition_attention
self.temporal_length = temporal_length
self.image_cross_attention = image_cross_attention
self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
self.default_fps = default_fps
self.fps_condition = fps_condition
self.ignore_noisy_latents = ignore_noisy_latents
assert len(condition_channels) > 0, 'Condition types must be specified'
self.condition_channels = condition_channels
self.control_injection_mode = control_injection_mode
self.use_vae_for_trajectory = use_vae_for_trajectory
## Time embedding blocks
self.time_proj = Timesteps(model_channels, flip_sin_to_cos=True, downscale_freq_shift=0)
self.time_embed = TimestepEmbedding(model_channels, time_embed_dim)
if fps_condition:
self.fps_embedding = TimestepEmbedding(model_channels, time_embed_dim)
nn.init.zeros_(self.fps_embedding.linear_2.weight)
nn.init.zeros_(self.fps_embedding.linear_2.bias)
if "motion_score" in condition_channels:
if control_injection_mode == 'add':
self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], model_channels, 3, padding=1))
elif control_injection_mode == 'concat':
self.motion_embedding = zero_module(conv_nd(dims, condition_channels["motion_score"], condition_channels["motion_score"], 3, padding=1))
else:
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")
if "sketch" in condition_channels:
if control_injection_mode == 'add':
self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], model_channels, 3, padding=1))
elif control_injection_mode == 'concat':
self.sketch_embedding = zero_module(conv_nd(dims, condition_channels["sketch"], condition_channels["sketch"], 3, padding=1))
else:
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")
if "trajectory" in condition_channels:
if control_injection_mode == 'add':
if use_vae_for_trajectory:
self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], model_channels, 3, padding=1))
else:
self.trajectory_embedding = ControlNetConditioningEmbedding(model_channels, condition_channels["trajectory"])
elif control_injection_mode == 'concat':
if use_vae_for_trajectory:
self.trajectory_embedding = zero_module(conv_nd(dims, condition_channels["trajectory"], condition_channels["trajectory"], 3, padding=1))
else:
self.trajectory_embedding = ControlNetConditioningEmbedding(condition_channels["trajectory"], condition_channels["trajectory"])
else:
raise ValueError(f"control_injection_mode {control_injection_mode} is not supported, use 'add' or 'concat'")
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
]
)
if self.addition_attention:
self.init_attn = TimestepEmbedSequential(
TemporalTransformer(
model_channels,
n_heads=8,
d_head=num_head_channels,
depth=transformer_depth,
context_dim=context_dim,
use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only,
causal_attention=False, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(ch, time_embed_dim, dropout,
out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
use_temporal_conv=temporal_conv
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
layers.append(
SpatialTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, disable_self_attn=False,
video_length=temporal_length, image_cross_attention=self.image_cross_attention,
image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,
)
)
if self.temporal_attention:
layers.append(
TemporalTransformer(ch, num_heads, dim_head,
depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only,
causal_attention=use_causal_attention, relative_position=use_relative_position,
temporal_length=temporal_length
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
if level < len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(ch, time_embed_dim, dropout,
out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True
)
if resblock_updown
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
)
)
ch = out_ch
ds *= 2
def forward(
self,
noisy_latents,
timesteps,
context_text,
context_img=None,
fps=None,
layer_latents=None, # [b, n_layer, t, c, h, w]
layer_latent_mask=None, # [b, n_layer, t, 1, h, w]
motion_scores=None, # [b, n_layer]
sketch=None, # [b, n_layer, t, c, h, w]
trajectory=None, # [b, n_layer, t, c, h, w]
):
if self.ignore_noisy_latents:
noisy_latents_shape = list(noisy_latents.shape)
noisy_latents_shape[1] = 0
noisy_latents = torch.zeros(noisy_latents_shape, device=noisy_latents.device, dtype=noisy_latents.dtype)
b, _, t, height, width = noisy_latents.shape
n_layer = layer_latents.shape[1]
t_emb = self.time_proj(timesteps).type(noisy_latents.dtype)
emb = self.time_embed(t_emb)
## repeat t times for context [(b t) 77 768] & time embedding
## check if we use per-frame image conditioning
if context_img is not None: ## decompose context into text and image
context_text = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t)
context_img = repeat(context_img, 'b tl c -> b n tl c', n=n_layer)
context_img = rearrange(context_img, 'b n (t l) c -> (b n t) l c', t=t)
context = torch.cat([context_text, context_img], dim=1)
else:
context = repeat(context_text, 'b l c -> (b n t) l c', n=n_layer, t=t)
emb = repeat(emb, 'b c -> (b n t) c', n=n_layer, t=t)
## always in shape (b n t) c h w, except for temporal layer
noisy_latents = repeat(noisy_latents, 'b c t h w -> (b n t) c h w', n=n_layer)
## combine emb
if self.fps_condition:
if fps is None:
fps = torch.tensor(
[self.default_fs] * b, dtype=torch.long, device=noisy_latents.device)
fps_emb = self.time_proj(fps).type(noisy_latents.dtype)
fps_embed = self.fps_embedding(fps_emb)
fps_embed = repeat(fps_embed, 'b c -> (b n t) c', n=n_layer, t=t)
emb = emb + fps_embed
## process conditions
layer_condition = torch.cat([layer_latents, layer_latent_mask], dim=3)
layer_condition = rearrange(layer_condition, 'b n t c h w -> (b n t) c h w')
h = torch.cat([noisy_latents, layer_condition], dim=1)
if "motion_score" in self.condition_channels:
motion_condition = repeat(motion_scores, 'b n -> b n t 1 h w', t=t, h=height, w=width)
motion_condition = torch.cat([motion_condition, layer_latent_mask], dim=3)
motion_condition = rearrange(motion_condition, 'b n t c h w -> (b n t) c h w')
motion_condition = self.motion_embedding(motion_condition)
if self.control_injection_mode == 'concat':
h = torch.cat([h, motion_condition], dim=1)
if "sketch" in self.condition_channels:
sketch_condition = rearrange(sketch, 'b n t c h w -> (b n t) c h w')
sketch_condition = self.sketch_embedding(sketch_condition)
if self.control_injection_mode == 'concat':
h = torch.cat([h, sketch_condition], dim=1)
if "trajectory" in self.condition_channels:
traj_condition = rearrange(trajectory, 'b n t c h w -> (b n t) c h w')
traj_condition = self.trajectory_embedding(traj_condition)
if self.control_injection_mode == 'concat':
h = torch.cat([h, traj_condition], dim=1)
layer_features = []
for id, module in enumerate(self.input_blocks):
h = module(h, emb, context=context, batch_size=b*n_layer)
if id == 0:
if self.control_injection_mode == 'add':
if "motion_score" in self.condition_channels:
h = h + motion_condition
if "sketch" in self.condition_channels:
h = h + sketch_condition
if "trajectory" in self.condition_channels:
h = h + traj_condition
if self.addition_attention:
h = self.init_attn(h, emb, context=context, batch_size=b*n_layer)
if SpatialTransformer in [type(m) for m in module]:
layer_features.append(rearrange(h, '(b n t) c h w -> b n t c h w', b=b, n=n_layer))
return layer_features
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, layer_controlnet_additional_kwargs={}, **kwargs):
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
variant = kwargs.pop("variant", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
# Load config if we don't provide a configuration
config_path = pretrained_model_name_or_path
user_agent = {
"diffusers": __version__,
"file_type": "model",
"framework": "pytorch",
}
# load config
config, unused_kwargs, commit_hash = cls.load_config(
config_path,
cache_dir=cache_dir,
return_unused_kwargs=True,
return_commit_hash=True,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
**kwargs,
)
for key, value in layer_controlnet_additional_kwargs.items():
if isinstance(value, (ListConfig, DictConfig)):
config[key] = OmegaConf.to_container(value, resolve=True)
else:
config[key] = value
# load model
model_file = None
if use_safetensors:
try:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
except IOError as e:
logger.error(f"An error occurred while trying to fetch {pretrained_model_name_or_path}: {e}")
if not allow_pickle:
raise
logger.warning(
"Defaulting to unsafe serialization. Pass `allow_pickle=False` to raise an error instead."
)
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path,
weights_name=_add_variant(WEIGHTS_NAME, variant),
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
commit_hash=commit_hash,
)
model = cls.from_config(config, **unused_kwargs)
state_dict = load_state_dict(model_file, variant)
if state_dict['input_blocks.0.0.weight'].shape[1] != model.input_blocks[0][0].weight.shape[1]:
state_dict.pop('input_blocks.0.0.weight')
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print(f"LayerControlNet loaded from {model_file} with {len(missing_keys)} missing keys and {len(unexpected_keys)} unexpected keys.")
return model |