LayerAnimate / app.py
YuxueYang
Set GPU duration to 120 seconds for the run function
a61ba8d
raw
history blame
34.6 kB
import argparse
import datetime
import os
import json
import torch
import torchvision.transforms as transforms
from torchvision.transforms import functional as F
import spaces
from huggingface_hub import snapshot_download
import gradio as gr
from diffusers import DDIMScheduler
from lvdm.models.unet import UNetModel
from lvdm.models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref
from lvdm.models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler
from lvdm.models.layer_controlnet import LayerControlNet
from lvdm.pipelines.pipeline_animation import AnimationPipeline
from lvdm.utils import generate_gaussian_heatmap, save_videos_grid, save_videos_with_traj
from einops import rearrange
import cv2
import decord
from PIL import Image
import numpy as np
from scipy.interpolate import PchipInterpolator
SAVE_DIR = "outputs"
os.makedirs(SAVE_DIR, exist_ok=True)
LENGTH = 16
WIDTH = 512
HEIGHT = 320
LAYER_CAPACITY = 4
DEVICE = "cuda"
WEIGHT_DTYPE = torch.bfloat16
PIPELINE = None
GENERATOR = None
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(
"Yuppie1204/LayerAnimate-Mix",
local_dir="checkpoints/LayerAnimate-Mix",
)
TEXT_ENCODER = FrozenOpenCLIPEmbedder().eval()
IMAGE_ENCODER = FrozenOpenCLIPImageEmbedderV2().eval()
default_path = "checkpoints/LayerAnimate-Mix"
scheduler = DDIMScheduler.from_pretrained(default_path, subfolder="scheduler")
image_projector = Resampler.from_pretrained(default_path, subfolder="image_projector").eval()
vae, vae_dualref = None, None
if "I2V" or "Mix" in default_path:
vae = AutoencoderKL.from_pretrained(default_path, subfolder="vae").eval()
if "Interp" or "Mix" in default_path:
vae_dualref = AutoencoderKL_Dualref.from_pretrained(default_path, subfolder="vae_dualref").eval()
unet = UNetModel.from_pretrained(default_path, subfolder="unet").eval()
layer_controlnet = LayerControlNet.from_pretrained(default_path, subfolder="layer_controlnet").eval()
PIPELINE = AnimationPipeline(
vae=vae, vae_dualref=vae_dualref, text_encoder=TEXT_ENCODER, image_encoder=IMAGE_ENCODER, image_projector=image_projector,
unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
).to(device=DEVICE, dtype=WEIGHT_DTYPE)
if "Interp" or "Mix" in default_path:
PIPELINE.vae_dualref.decoder.to(dtype=torch.float32)
TRANSFORMS = transforms.Compose([
transforms.Resize(min(HEIGHT, WIDTH)),
transforms.CenterCrop((HEIGHT, WIDTH)),
])
SAMPLE_GRID = np.meshgrid(np.linspace(0, WIDTH - 1, 10, dtype=int), np.linspace(0, HEIGHT - 1, 10, dtype=int))
SAMPLE_GRID = np.stack(SAMPLE_GRID, axis=-1).reshape(-1, 1, 2)
SAMPLE_GRID = np.repeat(SAMPLE_GRID, LENGTH, axis=1) # [N, F, 2]
@spaces.GPU
def set_seed(seed, device):
np.random.seed(seed)
torch.manual_seed(seed)
return torch.Generator(device).manual_seed(seed)
@spaces.GPU
def set_model(pretrained_model_path):
global PIPELINE
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval()
vae, vae_dualref = None, None
if "I2V" or "Mix" in pretrained_model_path:
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval()
if "Interp" or "Mix" in pretrained_model_path:
vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval()
unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval()
layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval()
PIPELINE.update(
vae=vae, vae_dualref=vae_dualref, text_encoder=TEXT_ENCODER, image_encoder=IMAGE_ENCODER, image_projector=image_projector,
unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
)
PIPELINE.to(device=DEVICE, dtype=WEIGHT_DTYPE)
if "Interp" or "Mix" in pretrained_model_path:
PIPELINE.vae_dualref.decoder.to(dtype=torch.float32)
return pretrained_model_path
def upload_image(image):
image = TRANSFORMS(image)
return image
@spaces.GPU(duration=120)
def run(input_image, input_image_end, pretrained_model_path, seed,
prompt, n_prompt, num_inference_steps, guidance_scale,
*layer_args):
generator = set_seed(seed, DEVICE)
global layer_tracking_points
args_layer_tracking_points = [layer_tracking_points[i].value for i in range(LAYER_CAPACITY)]
args_layer_masks = layer_args[:LAYER_CAPACITY]
args_layer_masks_end = layer_args[LAYER_CAPACITY : 2 * LAYER_CAPACITY]
args_layer_controls = layer_args[2 * LAYER_CAPACITY : 3 * LAYER_CAPACITY]
args_layer_scores = list(layer_args[3 * LAYER_CAPACITY : 4 * LAYER_CAPACITY])
args_layer_sketches = layer_args[4 * LAYER_CAPACITY : 5 * LAYER_CAPACITY]
args_layer_valids = layer_args[5 * LAYER_CAPACITY : 6 * LAYER_CAPACITY]
args_layer_statics = layer_args[6 * LAYER_CAPACITY : 7 * LAYER_CAPACITY]
for layer_idx in range(LAYER_CAPACITY):
if args_layer_controls[layer_idx] != "score":
args_layer_scores[layer_idx] = -1
if args_layer_statics[layer_idx]:
args_layer_scores[layer_idx] = 0
mode = "i2v"
image1 = F.to_tensor(input_image) * 2 - 1
frame_tensor = image1[None].to(DEVICE) # [F, C, H, W]
if input_image_end is not None:
mode = "interpolate"
image2 = F.to_tensor(input_image_end) * 2 - 1
frame_tensor2 = image2[None].to(DEVICE)
frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0)
frame_tensor = frame_tensor[None]
if mode == "interpolate":
layer_masks = torch.zeros((1, LAYER_CAPACITY, 2, 1, HEIGHT, WIDTH), dtype=torch.bool)
else:
layer_masks = torch.zeros((1, LAYER_CAPACITY, 1, 1, HEIGHT, WIDTH), dtype=torch.bool)
for layer_idx in range(LAYER_CAPACITY):
if args_layer_masks[layer_idx] is not None:
mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5
layer_masks[0, layer_idx, 0] = mask
if args_layer_masks_end[layer_idx] is not None and mode == "interpolate":
mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5
layer_masks[0, layer_idx, 1] = mask
layer_masks = layer_masks.to(DEVICE)
layer_regions = layer_masks * frame_tensor[:, None]
layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=DEVICE)
motion_scores = torch.tensor([args_layer_scores], dtype=WEIGHT_DTYPE, device=DEVICE)
layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=DEVICE)
sketch = torch.ones((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
for layer_idx in range(LAYER_CAPACITY):
sketch_path = args_layer_sketches[layer_idx]
if sketch_path is not None:
video_reader = decord.VideoReader(sketch_path)
assert len(video_reader) == LENGTH, f"Input the length of sketch sequence should match the video length."
video_frames = video_reader.get_batch(range(LENGTH)).asnumpy()
sketch_values = [F.to_tensor(TRANSFORMS(Image.fromarray(frame))) for frame in video_frames]
sketch_values = torch.stack(sketch_values) * 2 - 1
sketch[0, layer_idx] = sketch_values
sketch = sketch.to(DEVICE)
heatmap = torch.zeros((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
heatmap[:, :, :, 0] -= 1
trajectory = []
traj_layer_index = []
for layer_idx in range(LAYER_CAPACITY):
tracking_points = args_layer_tracking_points[layer_idx]
if args_layer_statics[layer_idx]:
# generate pseudo trajectory for static layers
temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy()
valid_flag = temp_layer_mask[SAMPLE_GRID[:, 0, 1], SAMPLE_GRID[:, 0, 0]]
valid_grid = SAMPLE_GRID[valid_flag] # [F, N, 2]
trajectory.extend(list(valid_grid))
traj_layer_index.extend([layer_idx] * valid_grid.shape[0])
else:
for temp_track in tracking_points:
if len(temp_track) > 1:
x = [point[0] for point in temp_track]
y = [point[1] for point in temp_track]
t = np.linspace(0, 1, len(temp_track))
fx = PchipInterpolator(t, x)
fy = PchipInterpolator(t, y)
t_new = np.linspace(0, 1, LENGTH)
x_new = fx(t_new)
y_new = fy(t_new)
temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32)
trajectory.append(temp_traj)
traj_layer_index.append(layer_idx)
elif len(temp_track) == 1:
trajectory.append(np.array(temp_track * LENGTH))
traj_layer_index.append(layer_idx)
trajectory = np.stack(trajectory)
trajectory = np.transpose(trajectory, (1, 0, 2))
traj_layer_index = np.array(traj_layer_index)
heatmap = generate_gaussian_heatmap(trajectory, WIDTH, HEIGHT, traj_layer_index, LAYER_CAPACITY, offset=True)
heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w")
graymap, offset = heatmap[:, :1], heatmap[:, 1:]
graymap = graymap / 255.
rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2)
rad_max = torch.max(rad)
epsilon = 1e-5
offset = offset / (rad_max + epsilon)
graymap = graymap * 2 - 1
heatmap = torch.cat([graymap, offset], dim=1)
heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=LAYER_CAPACITY)
heatmap = heatmap[None]
heatmap = heatmap.to(DEVICE)
sample = PIPELINE(
prompt,
LENGTH,
HEIGHT,
WIDTH,
frame_tensor,
layer_masks = layer_masks,
layer_regions = layer_regions,
layer_static = layer_static,
motion_scores = motion_scores,
sketch = sketch,
trajectory = heatmap,
layer_validity = layer_validity,
num_inference_steps = num_inference_steps,
guidance_scale = guidance_scale,
guidance_rescale = 0.7,
negative_prompt = n_prompt,
num_videos_per_prompt = 1,
eta = 1.0,
generator = generator,
fps = 24,
mode = mode,
weight_dtype = WEIGHT_DTYPE,
output_type = "tensor",
).videos
output_video_path = os.path.join(SAVE_DIR, "video.mp4")
save_videos_grid(sample, output_video_path, fps=8)
output_video_traj_path = os.path.join(SAVE_DIR, "video_with_traj.mp4")
vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
for traj_idx in range(trajectory.shape[1]):
if not args_layer_statics[traj_layer_index[traj_idx]]:
vis_traj_flag[traj_idx] = True
vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
save_videos_with_traj(sample[0], vis_traj, os.path.join(SAVE_DIR, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
return output_video_path, output_video_traj_path
def update_layer_region(image, layer_mask):
if image is None or layer_mask is None:
return None, False
layer_mask_tensor = (F.to_tensor(layer_mask) > 0.5).float()
image = F.to_tensor(image)
layer_region = image * layer_mask_tensor
layer_region = F.to_pil_image(layer_region)
layer_region.putalpha(layer_mask)
return layer_region, True
def control_layers(control_type):
if control_type == "score":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif control_type == "trajectory":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask):
first_mask_tensor = (F.to_tensor(first_mask) > 0.5).float()
first_frame = F.to_tensor(first_frame)
first_region = first_frame * first_mask_tensor
first_region = F.to_pil_image(first_region)
first_region.putalpha(first_mask)
transparent_background = first_region.convert('RGBA')
if last_frame is not None and last_mask is not None:
last_mask_tensor = (F.to_tensor(last_mask) > 0.5).float()
last_frame = F.to_tensor(last_frame)
last_region = last_frame * last_mask_tensor
last_region = F.to_pil_image(last_region)
last_region.putalpha(last_mask)
transparent_background_end = last_region.convert('RGBA')
width, height = transparent_background.size
transparent_layer = np.zeros((height, width, 4))
for track in tracking_points:
if len(track) > 1:
for i in range(len(track)-1):
start_point = np.array(track[i], dtype=np.int32)
end_point = np.array(track[i+1], dtype=np.int32)
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = max(np.sqrt(vx**2 + vy**2), 1)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
elif len(track) == 1:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
if last_frame is not None and last_mask is not None:
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
else:
trajectory_map_end = None
return trajectory_map, trajectory_map_end
def add_drag(layer_idx):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points.append([])
return
def delete_last_drag(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points.pop()
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def delete_last_step(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points[-1].pop()
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def add_tracking_points(layer_idx, first_frame, first_mask, last_frame, last_mask, evt: gr.SelectData): # SelectData is a subclass of EventData
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points[-1].append(evt.index)
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def reset_states(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
layer_tracking_points[layer_idx].value = [[]]
tracking_points = layer_tracking_points[layer_idx].value
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def upload_tracking_points(tracking_path, layer_idx, first_frame, first_mask, last_frame, last_mask):
if tracking_path is None:
layer_region, _ = update_layer_region(first_frame, first_mask)
layer_region_end, _ = update_layer_region(last_frame, last_mask)
return layer_region, layer_region_end
global layer_tracking_points
with open(tracking_path, "r") as f:
tracking_points = json.load(f)
layer_tracking_points[layer_idx].value = tracking_points
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def reset_all_controls():
global layer_tracking_points
outputs = []
# Reset tracking points states
for layer_idx in range(LAYER_CAPACITY):
layer_tracking_points[layer_idx].value = [[]]
# Reset global components
outputs.extend([
"an anime scene.", # text prompt
"", # negative text prompt
50, # inference steps
7.5, # guidance scale
42, # seed
None, # input image
None, # input image end
None, # output video
None, # output video with trajectory
])
# Reset layer controls visibility
outputs.extend([None] * LAYER_CAPACITY) # layer masks
outputs.extend([None] * LAYER_CAPACITY) # layer masks end
outputs.extend([None] * LAYER_CAPACITY) # layer regions
outputs.extend([None] * LAYER_CAPACITY) # layer regions end
outputs.extend(["sketch"] * LAYER_CAPACITY) # layer controls
outputs.extend([gr.update(visible=False, value=-1) for _ in range(LAYER_CAPACITY)]) # layer score controls
outputs.extend([gr.update(visible=False) for _ in range(4 * LAYER_CAPACITY)]) # layer trajectory control 4 buttons
outputs.extend([gr.update(visible=False, value=None) for _ in range(LAYER_CAPACITY)]) # layer trajectory file
outputs.extend([None] * LAYER_CAPACITY) # layer sketch controls
outputs.extend([False] * LAYER_CAPACITY) # layer validity
outputs.extend([False] * LAYER_CAPACITY) # layer statics
return outputs
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center">LayerAnimate: Layer-level Control for Animation</h1><br>""")
gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2501.08295'><b>LayerAnimate: Layer-level Control for Animation</b></a>.<br>
Github Repo can be found at https://github.com/IamCreateAI/LayerAnimate<br>
The template is inspired by Framer.""")
gr.Image(label="LayerAnimate: Layer-level Control for Animation", value="__assets__/figs/demos.gif", height=540, width=960)
gr.Markdown("""## Usage: <br>
1. Select a pretrained model via the "Pretrained Model" dropdown of choices in the right column.<br>
2. Upload frames in the right column.<br>
&ensp; 1.1. Upload the first frame.<br>
&ensp; 1.2. (Optional) Upload the last frame.<br>
3. Input layer-level controls in the left column.<br>
&ensp; 2.1. Upload layer mask images for each layer, which can be obtained from many tools such as https://huggingface.co/spaces/yumyum2081/SAM2-Image-Predictor.<br>
&ensp; 2.2. Choose a control type from "motion score", "trajectory" and "sketch".<br>
&ensp; 2.3. For trajectory control, you can draw trajectories on layer regions.<br>
&ensp; &ensp; 2.3.1. Click "Add New Trajectory" to add a new trajectory.<br>
&ensp; &ensp; 2.3.2. Click "Reset" to reset all trajectories.<br>
&ensp; &ensp; 2.3.3. Click "Delete Last Step" to delete the lastest clicked control point.<br>
&ensp; &ensp; 2.3.4. Click "Delete Last Trajectory" to delete the whole lastest path.<br>
&ensp; &ensp; 2.3.5. Or upload a trajectory file in json format, we provide examples below.<br>
&ensp; 2.4. For sketch control, you can upload a sketch video.<br>
4. We provide four layers for you to control, and it is not necessary to use all of them.<br>
5. Click "Run" button to generate videos. <br>
6. **Note: Remember to click "Clear" button to clear all the controls before switching to another example.**<br>
""")
layer_indices = [gr.Number(value=i, visible=False) for i in range(LAYER_CAPACITY)]
layer_tracking_points = [gr.State([[]]) for _ in range(LAYER_CAPACITY)]
layer_masks = []
layer_masks_end = []
layer_regions = []
layer_regions_end = []
layer_controls = []
layer_score_controls = []
layer_traj_controls = []
layer_traj_files = []
layer_sketch_controls = []
layer_statics = []
layer_valids = []
with gr.Row():
with gr.Column(scale=1):
for layer_idx in range(LAYER_CAPACITY):
with gr.Accordion(label=f"Layer {layer_idx+1}", open=True if layer_idx == 0 else False):
gr.Markdown("""<div align="center"><b>Layer Masks</b></div>""")
gr.Markdown("**Note**: Layer mask for the last frame is not required in I2V mode.")
with gr.Row():
with gr.Column():
layer_masks.append(gr.Image(
label="Layer Mask for First Frame",
height=320,
width=512,
image_mode="L",
type="pil",
))
with gr.Column():
layer_masks_end.append(gr.Image(
label="Layer Mask for Last Frame",
height=320,
width=512,
image_mode="L",
type="pil",
))
gr.Markdown("""<div align="center"><b>Layer Regions</b></div>""")
with gr.Row():
with gr.Column():
layer_regions.append(gr.Image(
label="Layer Region for First Frame",
height=320,
width=512,
image_mode="RGBA",
type="pil",
# value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)),
))
with gr.Column():
layer_regions_end.append(gr.Image(
label="Layer Region for Last Frame",
height=320,
width=512,
image_mode="RGBA",
type="pil",
# value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)),
))
layer_controls.append(
gr.Radio(["score", "trajectory", "sketch"], label="Choose A Control Type", value="sketch")
)
layer_score_controls.append(
gr.Number(label="Motion Score", value=-1, visible=False)
)
layer_traj_controls.append(
[
gr.Button(value="Add New Trajectory", visible=False),
gr.Button(value="Reset", visible=False),
gr.Button(value="Delete Last Step", visible=False),
gr.Button(value="Delete Last Trajectory", visible=False),
]
)
layer_traj_files.append(
gr.File(label="Trajectory File", visible=False)
)
layer_sketch_controls.append(
gr.Video(label="Sketch", height=320, width=512, visible=True)
)
layer_controls[layer_idx].change(
fn=control_layers,
inputs=layer_controls[layer_idx],
outputs=[layer_score_controls[layer_idx], *layer_traj_controls[layer_idx], layer_traj_files[layer_idx], layer_sketch_controls[layer_idx]]
)
with gr.Row():
layer_valids.append(gr.Checkbox(label="Valid", info="Is the layer valid?"))
layer_statics.append(gr.Checkbox(label="Static", info="Is the layer static?"))
with gr.Column(scale=1):
pretrained_model_path = gr.Dropdown(
label="Pretrained Model",
choices=[
"checkpoints/LayerAnimate-Mix",
],
value="checkpoints/LayerAnimate-Mix",
)
text_prompt = gr.Textbox(label="Text Prompt", value="an anime scene.")
text_n_prompt = gr.Textbox(label="Negative Text Prompt", value="")
with gr.Row():
num_inference_steps = gr.Number(label="Inference Steps", value=50, minimum=1, maximum=1000)
guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
seed = gr.Number(label="Seed", value=42)
with gr.Row():
input_image = gr.Image(
label="First Frame",
height=320,
width=512,
type="pil",
)
input_image_end = gr.Image(
label="Last Frame",
height=320,
width=512,
type="pil",
)
run_button = gr.Button(value="Run")
with gr.Row():
output_video = gr.Video(
label="Output Video",
height=320,
width=512,
)
output_video_traj = gr.Video(
label="Output Video with Trajectory",
height=320,
width=512,
)
clear_button = gr.Button(value="Clear")
with gr.Row():
gr.Markdown("""
## Citation
```bibtex
@article{yang2025layeranimate,
author = {Yang, Yuxue and Fan, Lue and Lin, Zuzeng and Wang, Feng and Zhang, Zhaoxiang},
title = {LayerAnimate: Layer-level Control for Animation},
journal = {arXiv preprint arXiv:2501.08295},
year = {2025},
}
```
""")
pretrained_model_path.input(set_model, pretrained_model_path, pretrained_model_path)
input_image.upload(upload_image, input_image, input_image)
input_image_end.upload(upload_image, input_image_end, input_image_end)
for i in range(LAYER_CAPACITY):
layer_masks[i].upload(upload_image, layer_masks[i], layer_masks[i])
layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]])
layer_masks_end[i].upload(upload_image, layer_masks_end[i], layer_masks_end[i])
layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]])
layer_traj_controls[i][0].click(add_drag, layer_indices[i], None)
layer_traj_controls[i][1].click(
reset_states,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_traj_controls[i][2].click(
delete_last_step,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_traj_controls[i][3].click(
delete_last_drag,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_traj_files[i].change(
upload_tracking_points,
[layer_traj_files[i], layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_regions[i].select(
add_tracking_points,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_regions_end[i].select(
add_tracking_points,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
run_button.click(
run,
[input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale,
*layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics],
[output_video, output_video_traj]
)
clear_button.click(
reset_all_controls,
[],
[
text_prompt, text_n_prompt, num_inference_steps, guidance_scale, seed,
input_image, input_image_end, output_video, output_video_traj,
*layer_masks, *layer_masks_end, *layer_regions, *layer_regions_end,
*layer_controls, *layer_score_controls, *[button for temp_layer_controls in layer_traj_controls for button in temp_layer_controls], *layer_traj_files,
*layer_sketch_controls, *layer_valids, *layer_statics
]
)
examples = gr.Examples(
examples=[
[
"__assets__/demos/demo_3/first_frame.jpg", "__assets__/demos/demo_3/last_frame.jpg",
"score", "__assets__/demos/demo_3/layer_0.jpg", "__assets__/demos/demo_3/layer_0_last.jpg", 0.4, None, None, True, False,
"score", "__assets__/demos/demo_3/layer_1.jpg", "__assets__/demos/demo_3/layer_1_last.jpg", 0.2, None, None, True, False,
"trajectory", "__assets__/demos/demo_3/layer_2.jpg", "__assets__/demos/demo_3/layer_2_last.jpg", -1, "__assets__/demos/demo_3/trajectory.json", None, True, False,
"sketch", "__assets__/demos/demo_3/layer_3.jpg", "__assets__/demos/demo_3/layer_3_last.jpg", -1, None, "__assets__/demos/demo_3/sketch.mp4", True, False,
52
],
[
"__assets__/demos/demo_4/first_frame.jpg", None,
"score", "__assets__/demos/demo_4/layer_0.jpg", None, 0.0, None, None, True, True,
"trajectory", "__assets__/demos/demo_4/layer_1.jpg", None, -1, "__assets__/demos/demo_4/trajectory.json", None, True, False,
"sketch", "__assets__/demos/demo_4/layer_2.jpg", None, -1, None, "__assets__/demos/demo_4/sketch.mp4", True, False,
"score", None, None, -1, None, None, False, False,
42
],
[
"__assets__/demos/demo_5/first_frame.jpg", None,
"sketch", "__assets__/demos/demo_5/layer_0.jpg", None, -1, None, "__assets__/demos/demo_5/sketch.mp4", True, False,
"trajectory", "__assets__/demos/demo_5/layer_1.jpg", None, -1, "__assets__/demos/demo_5/trajectory.json", None, True, False,
"score", None, None, -1, None, None, False, False,
"score", None, None, -1, None, None, False, False,
47
],
],
inputs=[
input_image, input_image_end,
layer_controls[0], layer_masks[0], layer_masks_end[0], layer_score_controls[0], layer_traj_files[0], layer_sketch_controls[0], layer_valids[0], layer_statics[0],
layer_controls[1], layer_masks[1], layer_masks_end[1], layer_score_controls[1], layer_traj_files[1], layer_sketch_controls[1], layer_valids[1], layer_statics[1],
layer_controls[2], layer_masks[2], layer_masks_end[2], layer_score_controls[2], layer_traj_files[2], layer_sketch_controls[2], layer_valids[2], layer_statics[2],
layer_controls[3], layer_masks[3], layer_masks_end[3], layer_score_controls[3], layer_traj_files[3], layer_sketch_controls[3], layer_valids[3], layer_statics[3],
seed
],
)
demo.launch()