File size: 34,592 Bytes
2a59fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd5e40
2a59fa8
 
 
 
 
9bd5e40
 
 
2a59fa8
 
 
 
 
 
9bd5e40
 
 
f01a554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd5e40
 
 
 
 
 
 
 
 
5cbadca
9bd5e40
 
5cbadca
9bd5e40
 
 
 
 
 
 
 
 
 
 
 
 
f01a554
9bd5e40
 
f01a554
 
9bd5e40
 
 
 
 
 
 
 
a61ba8d
9bd5e40
 
 
5cbadca
f01a554
9bd5e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a59fa8
9bd5e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531d0cf
2a59fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531d0cf
2a59fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd5e40
 
 
2a59fa8
9bd5e40
2a59fa8
9bd5e40
2a59fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bd5e40
2a59fa8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import argparse
import datetime
import os
import json

import torch
import torchvision.transforms as transforms
from torchvision.transforms import functional as F

import spaces
from huggingface_hub import snapshot_download
import gradio as gr

from diffusers import DDIMScheduler

from lvdm.models.unet import UNetModel
from lvdm.models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref
from lvdm.models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler
from lvdm.models.layer_controlnet import LayerControlNet
from lvdm.pipelines.pipeline_animation import AnimationPipeline
from lvdm.utils import generate_gaussian_heatmap, save_videos_grid, save_videos_with_traj

from einops import rearrange
import cv2
import decord
from PIL import Image
import numpy as np
from scipy.interpolate import PchipInterpolator

SAVE_DIR = "outputs"
os.makedirs(SAVE_DIR, exist_ok=True)
LENGTH = 16
WIDTH = 512
HEIGHT = 320
LAYER_CAPACITY = 4
DEVICE = "cuda"
WEIGHT_DTYPE = torch.bfloat16
PIPELINE = None
GENERATOR = None
os.makedirs("checkpoints", exist_ok=True)

snapshot_download(
    "Yuppie1204/LayerAnimate-Mix",
    local_dir="checkpoints/LayerAnimate-Mix",
)
TEXT_ENCODER  = FrozenOpenCLIPEmbedder().eval()
IMAGE_ENCODER = FrozenOpenCLIPImageEmbedderV2().eval()

default_path = "checkpoints/LayerAnimate-Mix"
scheduler = DDIMScheduler.from_pretrained(default_path, subfolder="scheduler")
image_projector = Resampler.from_pretrained(default_path, subfolder="image_projector").eval()
vae, vae_dualref = None, None
if "I2V" or "Mix" in default_path:
    vae           = AutoencoderKL.from_pretrained(default_path, subfolder="vae").eval()
if "Interp" or "Mix" in default_path:
    vae_dualref   = AutoencoderKL_Dualref.from_pretrained(default_path, subfolder="vae_dualref").eval()
unet              = UNetModel.from_pretrained(default_path, subfolder="unet").eval()
layer_controlnet  = LayerControlNet.from_pretrained(default_path, subfolder="layer_controlnet").eval()
PIPELINE = AnimationPipeline(
    vae=vae, vae_dualref=vae_dualref, text_encoder=TEXT_ENCODER, image_encoder=IMAGE_ENCODER, image_projector=image_projector,
    unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
).to(device=DEVICE, dtype=WEIGHT_DTYPE)
if "Interp" or "Mix" in default_path:
    PIPELINE.vae_dualref.decoder.to(dtype=torch.float32)

TRANSFORMS = transforms.Compose([
    transforms.Resize(min(HEIGHT, WIDTH)),
    transforms.CenterCrop((HEIGHT, WIDTH)),
])
SAMPLE_GRID = np.meshgrid(np.linspace(0, WIDTH - 1, 10, dtype=int), np.linspace(0, HEIGHT - 1, 10, dtype=int))
SAMPLE_GRID = np.stack(SAMPLE_GRID, axis=-1).reshape(-1, 1, 2)
SAMPLE_GRID = np.repeat(SAMPLE_GRID, LENGTH, axis=1) # [N, F, 2]

@spaces.GPU
def set_seed(seed, device):
    np.random.seed(seed)
    torch.manual_seed(seed)
    return torch.Generator(device).manual_seed(seed)

@spaces.GPU
def set_model(pretrained_model_path):
    global PIPELINE
    scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
    image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval()
    vae, vae_dualref = None, None
    if "I2V" or "Mix" in pretrained_model_path:
        vae           = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval()
    if "Interp" or "Mix" in pretrained_model_path:
        vae_dualref   = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval()
    unet              = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval()
    layer_controlnet  = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval()
    PIPELINE.update(
        vae=vae, vae_dualref=vae_dualref, text_encoder=TEXT_ENCODER, image_encoder=IMAGE_ENCODER, image_projector=image_projector,
        unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
    )
    PIPELINE.to(device=DEVICE, dtype=WEIGHT_DTYPE)
    if "Interp" or "Mix" in pretrained_model_path:
        PIPELINE.vae_dualref.decoder.to(dtype=torch.float32)
    return pretrained_model_path

def upload_image(image):
    image = TRANSFORMS(image)
    return image

@spaces.GPU(duration=120)
def run(input_image, input_image_end, pretrained_model_path, seed,
        prompt, n_prompt, num_inference_steps, guidance_scale,
        *layer_args):
    generator = set_seed(seed, DEVICE)
    global layer_tracking_points
    args_layer_tracking_points = [layer_tracking_points[i].value for i in range(LAYER_CAPACITY)]

    args_layer_masks = layer_args[:LAYER_CAPACITY]
    args_layer_masks_end = layer_args[LAYER_CAPACITY : 2 * LAYER_CAPACITY]
    args_layer_controls = layer_args[2 * LAYER_CAPACITY : 3 * LAYER_CAPACITY]
    args_layer_scores = list(layer_args[3 * LAYER_CAPACITY : 4 * LAYER_CAPACITY])
    args_layer_sketches = layer_args[4 * LAYER_CAPACITY : 5 * LAYER_CAPACITY]
    args_layer_valids = layer_args[5 * LAYER_CAPACITY : 6 * LAYER_CAPACITY]
    args_layer_statics = layer_args[6 * LAYER_CAPACITY : 7 * LAYER_CAPACITY]
    for layer_idx in range(LAYER_CAPACITY):
        if args_layer_controls[layer_idx] != "score":
            args_layer_scores[layer_idx] = -1
        if args_layer_statics[layer_idx]:
            args_layer_scores[layer_idx] = 0

    mode = "i2v"
    image1 = F.to_tensor(input_image) * 2 - 1
    frame_tensor = image1[None].to(DEVICE) # [F, C, H, W]
    if input_image_end is not None:
        mode = "interpolate"
        image2 = F.to_tensor(input_image_end) * 2 - 1
        frame_tensor2 = image2[None].to(DEVICE)
        frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0)
    frame_tensor = frame_tensor[None]

    if mode == "interpolate":
        layer_masks = torch.zeros((1, LAYER_CAPACITY, 2, 1, HEIGHT, WIDTH), dtype=torch.bool)
    else:
        layer_masks = torch.zeros((1, LAYER_CAPACITY, 1, 1, HEIGHT, WIDTH), dtype=torch.bool)
    for layer_idx in range(LAYER_CAPACITY):
        if args_layer_masks[layer_idx] is not None:
            mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5
            layer_masks[0, layer_idx, 0] = mask
        if args_layer_masks_end[layer_idx] is not None and mode == "interpolate":
            mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5
            layer_masks[0, layer_idx, 1] = mask
    layer_masks = layer_masks.to(DEVICE)
    layer_regions = layer_masks * frame_tensor[:, None]
    layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=DEVICE)
    motion_scores = torch.tensor([args_layer_scores], dtype=WEIGHT_DTYPE, device=DEVICE)
    layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=DEVICE)

    sketch = torch.ones((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
    for layer_idx in range(LAYER_CAPACITY):
        sketch_path = args_layer_sketches[layer_idx]
        if sketch_path is not None:
            video_reader = decord.VideoReader(sketch_path)
            assert len(video_reader) == LENGTH, f"Input the length of sketch sequence should match the video length."
            video_frames = video_reader.get_batch(range(LENGTH)).asnumpy()
            sketch_values = [F.to_tensor(TRANSFORMS(Image.fromarray(frame))) for frame in video_frames]
            sketch_values = torch.stack(sketch_values) * 2 - 1
            sketch[0, layer_idx] = sketch_values
    sketch = sketch.to(DEVICE)

    heatmap = torch.zeros((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
    heatmap[:, :, :, 0] -= 1
    trajectory = []
    traj_layer_index = []
    for layer_idx in range(LAYER_CAPACITY):
        tracking_points = args_layer_tracking_points[layer_idx]
        if args_layer_statics[layer_idx]:
            # generate pseudo trajectory for static layers
            temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy()
            valid_flag = temp_layer_mask[SAMPLE_GRID[:, 0, 1], SAMPLE_GRID[:, 0, 0]]
            valid_grid = SAMPLE_GRID[valid_flag]    # [F, N, 2]
            trajectory.extend(list(valid_grid))
            traj_layer_index.extend([layer_idx] * valid_grid.shape[0])
        else:
            for temp_track in tracking_points:
                if len(temp_track) > 1:
                    x = [point[0] for point in temp_track]
                    y = [point[1] for point in temp_track]
                    t = np.linspace(0, 1, len(temp_track))
                    fx = PchipInterpolator(t, x)
                    fy = PchipInterpolator(t, y)
                    t_new = np.linspace(0, 1, LENGTH)
                    x_new = fx(t_new)
                    y_new = fy(t_new)
                    temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32)
                    trajectory.append(temp_traj)
                    traj_layer_index.append(layer_idx)
                elif len(temp_track) == 1:
                    trajectory.append(np.array(temp_track * LENGTH))
                    traj_layer_index.append(layer_idx)

    trajectory = np.stack(trajectory)
    trajectory = np.transpose(trajectory, (1, 0, 2))
    traj_layer_index = np.array(traj_layer_index)
    heatmap = generate_gaussian_heatmap(trajectory, WIDTH, HEIGHT, traj_layer_index, LAYER_CAPACITY, offset=True)
    heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w")
    graymap, offset = heatmap[:, :1], heatmap[:, 1:]
    graymap = graymap / 255.
    rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2)
    rad_max = torch.max(rad)
    epsilon = 1e-5
    offset = offset / (rad_max + epsilon)
    graymap = graymap * 2 - 1
    heatmap = torch.cat([graymap, offset], dim=1)
    heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=LAYER_CAPACITY)
    heatmap = heatmap[None]
    heatmap = heatmap.to(DEVICE)

    sample = PIPELINE(
        prompt,
        LENGTH,
        HEIGHT,
        WIDTH,
        frame_tensor,
        layer_masks             = layer_masks,
        layer_regions           = layer_regions,
        layer_static            = layer_static,
        motion_scores           = motion_scores,
        sketch                  = sketch,
        trajectory              = heatmap,
        layer_validity          = layer_validity,
        num_inference_steps     = num_inference_steps,
        guidance_scale          = guidance_scale,
        guidance_rescale        = 0.7,
        negative_prompt         = n_prompt,
        num_videos_per_prompt   = 1,
        eta                     = 1.0,
        generator               = generator,
        fps                     = 24,
        mode                    = mode,
        weight_dtype            = WEIGHT_DTYPE,
        output_type             = "tensor",
    ).videos
    output_video_path = os.path.join(SAVE_DIR, "video.mp4")
    save_videos_grid(sample, output_video_path, fps=8)
    output_video_traj_path = os.path.join(SAVE_DIR, "video_with_traj.mp4")
    vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
    for traj_idx in range(trajectory.shape[1]):
        if not args_layer_statics[traj_layer_index[traj_idx]]:
            vis_traj_flag[traj_idx] = True
    vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
    save_videos_with_traj(sample[0], vis_traj, os.path.join(SAVE_DIR, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
    return output_video_path, output_video_traj_path

def update_layer_region(image, layer_mask):
    if image is None or layer_mask is None:
        return None, False
    layer_mask_tensor = (F.to_tensor(layer_mask) > 0.5).float()
    image = F.to_tensor(image)
    layer_region = image * layer_mask_tensor
    layer_region = F.to_pil_image(layer_region)
    layer_region.putalpha(layer_mask)
    return layer_region, True

def control_layers(control_type):
    if control_type == "score":
        return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    elif control_type == "trajectory":
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)

def visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask):
    first_mask_tensor = (F.to_tensor(first_mask) > 0.5).float()
    first_frame = F.to_tensor(first_frame)
    first_region = first_frame * first_mask_tensor
    first_region = F.to_pil_image(first_region)
    first_region.putalpha(first_mask)
    transparent_background = first_region.convert('RGBA')

    if last_frame is not None and last_mask is not None:
        last_mask_tensor = (F.to_tensor(last_mask) > 0.5).float()
        last_frame = F.to_tensor(last_frame)
        last_region = last_frame * last_mask_tensor
        last_region = F.to_pil_image(last_region)
        last_region.putalpha(last_mask)
        transparent_background_end = last_region.convert('RGBA')

    width, height = transparent_background.size
    transparent_layer = np.zeros((height, width, 4))
    for track in tracking_points:
        if len(track) > 1:
            for i in range(len(track)-1):
                start_point = np.array(track[i], dtype=np.int32)
                end_point = np.array(track[i+1], dtype=np.int32)
                vx = end_point[0] - start_point[0]
                vy = end_point[1] - start_point[1]
                arrow_length = max(np.sqrt(vx**2 + vy**2), 1)
                if i == len(track)-2:
                    cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
                else:
                    cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
        elif len(track) == 1:
            cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
    transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
    trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
    if last_frame is not None and last_mask is not None:
        trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
    else:
        trajectory_map_end = None
    return trajectory_map, trajectory_map_end

def add_drag(layer_idx):
    global layer_tracking_points
    tracking_points = layer_tracking_points[layer_idx].value
    tracking_points.append([])
    return

def delete_last_drag(layer_idx, first_frame, first_mask, last_frame, last_mask):
    global layer_tracking_points
    tracking_points = layer_tracking_points[layer_idx].value
    tracking_points.pop()
    trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
    return trajectory_map, trajectory_map_end

def delete_last_step(layer_idx, first_frame, first_mask, last_frame, last_mask):
    global layer_tracking_points
    tracking_points = layer_tracking_points[layer_idx].value
    tracking_points[-1].pop()
    trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
    return trajectory_map, trajectory_map_end

def add_tracking_points(layer_idx, first_frame, first_mask, last_frame, last_mask, evt: gr.SelectData):  # SelectData is a subclass of EventData
    print(f"You selected {evt.value} at {evt.index} from {evt.target}")
    global layer_tracking_points
    tracking_points = layer_tracking_points[layer_idx].value
    tracking_points[-1].append(evt.index)
    trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
    return trajectory_map, trajectory_map_end

def reset_states(layer_idx, first_frame, first_mask, last_frame, last_mask):
    global layer_tracking_points
    layer_tracking_points[layer_idx].value = [[]]
    tracking_points = layer_tracking_points[layer_idx].value
    trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
    return trajectory_map, trajectory_map_end

def upload_tracking_points(tracking_path, layer_idx, first_frame, first_mask, last_frame, last_mask):
    if tracking_path is None:
        layer_region, _ = update_layer_region(first_frame, first_mask)
        layer_region_end, _ = update_layer_region(last_frame, last_mask)
        return layer_region, layer_region_end

    global layer_tracking_points
    with open(tracking_path, "r") as f:
        tracking_points = json.load(f)
    layer_tracking_points[layer_idx].value = tracking_points
    trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
    return trajectory_map, trajectory_map_end

def reset_all_controls():
    global layer_tracking_points
    outputs = []
    # Reset tracking points states
    for layer_idx in range(LAYER_CAPACITY):
        layer_tracking_points[layer_idx].value = [[]]

    # Reset global components
    outputs.extend([
        "an anime scene.",  # text prompt
        "",                 # negative text prompt
        50,                 # inference steps
        7.5,                # guidance scale
        42,                 # seed
        None,               # input image
        None,               # input image end
        None,               # output video
        None,               # output video with trajectory
    ])
    # Reset layer controls visibility
    outputs.extend([None] * LAYER_CAPACITY)    # layer masks
    outputs.extend([None] * LAYER_CAPACITY)    # layer masks end
    outputs.extend([None] * LAYER_CAPACITY)    # layer regions
    outputs.extend([None] * LAYER_CAPACITY)    # layer regions end
    outputs.extend(["sketch"] * LAYER_CAPACITY)    # layer controls
    outputs.extend([gr.update(visible=False, value=-1) for _ in range(LAYER_CAPACITY)])    # layer score controls
    outputs.extend([gr.update(visible=False) for _ in range(4 * LAYER_CAPACITY)])    # layer trajectory control 4 buttons
    outputs.extend([gr.update(visible=False, value=None) for _ in range(LAYER_CAPACITY)])    # layer trajectory file
    outputs.extend([None] * LAYER_CAPACITY)    # layer sketch controls
    outputs.extend([False] * LAYER_CAPACITY)    # layer validity
    outputs.extend([False] * LAYER_CAPACITY)    # layer statics
    return outputs

if __name__ == "__main__":
    with gr.Blocks() as demo:
        gr.Markdown("""<h1 align="center">LayerAnimate: Layer-level Control for Animation</h1><br>""")

        gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2501.08295'><b>LayerAnimate: Layer-level Control for Animation</b></a>.<br>
                    Github Repo can be found at https://github.com/IamCreateAI/LayerAnimate<br>
                    The template is inspired by Framer.""")

        gr.Image(label="LayerAnimate: Layer-level Control for Animation", value="__assets__/figs/demos.gif", height=540, width=960)

        gr.Markdown("""## Usage: <br>
                    1. Select a pretrained model via the "Pretrained Model" dropdown of choices in the right column.<br>
                    2. Upload frames in the right column.<br>
                    &ensp;  1.1.  Upload the first frame.<br>
                    &ensp;  1.2. (Optional) Upload the last frame.<br>
                    3. Input layer-level controls in the left column.<br>
                    &ensp;  2.1. Upload layer mask images for each layer, which can be obtained from many tools such as https://huggingface.co/spaces/yumyum2081/SAM2-Image-Predictor.<br>
                    &ensp;  2.2. Choose a control type from "motion score", "trajectory" and "sketch".<br>
                    &ensp;  2.3. For trajectory control, you can draw trajectories on layer regions.<br>
                    &ensp;  &ensp;  2.3.1. Click "Add New Trajectory" to add a new trajectory.<br>
                    &ensp;  &ensp;  2.3.2. Click "Reset" to reset all trajectories.<br>
                    &ensp;  &ensp;  2.3.3. Click "Delete Last Step" to delete the lastest clicked control point.<br>
                    &ensp;  &ensp;  2.3.4. Click "Delete Last Trajectory" to delete the whole lastest path.<br>
                    &ensp;  &ensp;  2.3.5. Or upload a trajectory file in json format, we provide examples below.<br>
                    &ensp;  2.4. For sketch control, you can upload a sketch video.<br>
                    4. We provide four layers for you to control, and it is not necessary to use all of them.<br>
                    5. Click "Run" button to generate videos. <br>
                    6. **Note: Remember to click "Clear" button to clear all the controls before switching to another example.**<br>
                    """)

        layer_indices = [gr.Number(value=i, visible=False) for i in range(LAYER_CAPACITY)]
        layer_tracking_points = [gr.State([[]]) for _ in range(LAYER_CAPACITY)]
        layer_masks = []
        layer_masks_end = []
        layer_regions = []
        layer_regions_end = []
        layer_controls = []
        layer_score_controls = []
        layer_traj_controls = []
        layer_traj_files = []
        layer_sketch_controls = []
        layer_statics = []
        layer_valids = []

        with gr.Row():
            with gr.Column(scale=1):
                for layer_idx in range(LAYER_CAPACITY):
                    with gr.Accordion(label=f"Layer {layer_idx+1}", open=True if layer_idx == 0 else False):
                        gr.Markdown("""<div align="center"><b>Layer Masks</b></div>""")
                        gr.Markdown("**Note**: Layer mask for the last frame is not required in I2V mode.")
                        with gr.Row():
                            with gr.Column():
                                layer_masks.append(gr.Image(
                                    label="Layer Mask for First Frame",
                                    height=320,
                                    width=512,
                                    image_mode="L",
                                    type="pil",
                                ))

                            with gr.Column():
                                layer_masks_end.append(gr.Image(
                                    label="Layer Mask for Last Frame",
                                    height=320,
                                    width=512,
                                    image_mode="L",
                                    type="pil",
                                ))
                        gr.Markdown("""<div align="center"><b>Layer Regions</b></div>""")
                        with gr.Row():
                            with gr.Column():
                                layer_regions.append(gr.Image(
                                    label="Layer Region for First Frame",
                                    height=320,
                                    width=512,
                                    image_mode="RGBA",
                                    type="pil",
                                    # value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)),
                                ))

                            with gr.Column():
                                layer_regions_end.append(gr.Image(
                                    label="Layer Region for Last Frame",
                                    height=320,
                                    width=512,
                                    image_mode="RGBA",
                                    type="pil",
                                    # value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)),
                                ))
                        layer_controls.append(
                            gr.Radio(["score", "trajectory", "sketch"], label="Choose A Control Type", value="sketch")
                        )
                        layer_score_controls.append(
                            gr.Number(label="Motion Score", value=-1, visible=False)
                        )
                        layer_traj_controls.append(
                            [
                                gr.Button(value="Add New Trajectory", visible=False),
                                gr.Button(value="Reset", visible=False),
                                gr.Button(value="Delete Last Step", visible=False),
                                gr.Button(value="Delete Last Trajectory", visible=False),
                            ]
                        )
                        layer_traj_files.append(
                            gr.File(label="Trajectory File", visible=False)
                        )
                        layer_sketch_controls.append(
                            gr.Video(label="Sketch", height=320, width=512, visible=True)
                        )
                        layer_controls[layer_idx].change(
                            fn=control_layers,
                            inputs=layer_controls[layer_idx],
                            outputs=[layer_score_controls[layer_idx], *layer_traj_controls[layer_idx], layer_traj_files[layer_idx], layer_sketch_controls[layer_idx]]
                        )
                        with gr.Row():
                            layer_valids.append(gr.Checkbox(label="Valid", info="Is the layer valid?"))
                            layer_statics.append(gr.Checkbox(label="Static", info="Is the layer static?"))

            with gr.Column(scale=1):
                pretrained_model_path = gr.Dropdown(
                    label="Pretrained Model",
                    choices=[
                        "checkpoints/LayerAnimate-Mix",
                    ],
                    value="checkpoints/LayerAnimate-Mix",
                )
                text_prompt = gr.Textbox(label="Text Prompt", value="an anime scene.")
                text_n_prompt = gr.Textbox(label="Negative Text Prompt", value="")
                with gr.Row():
                    num_inference_steps = gr.Number(label="Inference Steps", value=50, minimum=1, maximum=1000)
                    guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
                    seed = gr.Number(label="Seed", value=42)
                with gr.Row():
                    input_image = gr.Image(
                        label="First Frame",
                        height=320,
                        width=512,
                        type="pil",
                    )
                    input_image_end = gr.Image(
                        label="Last Frame",
                        height=320,
                        width=512,
                        type="pil",
                    )
                run_button = gr.Button(value="Run")
                with gr.Row():
                    output_video = gr.Video(
                        label="Output Video",
                        height=320,
                        width=512,
                    )
                    output_video_traj = gr.Video(
                        label="Output Video with Trajectory",
                        height=320,
                        width=512,
                    )
                clear_button = gr.Button(value="Clear")

        with gr.Row():
            gr.Markdown("""
                ## Citation
                ```bibtex
                @article{yang2025layeranimate,
                author    = {Yang, Yuxue and Fan, Lue and Lin, Zuzeng and Wang, Feng and Zhang, Zhaoxiang},
                title     = {LayerAnimate: Layer-level Control for Animation},
                journal   = {arXiv preprint arXiv:2501.08295},
                year      = {2025},
                }
                ```
                """)

        pretrained_model_path.input(set_model, pretrained_model_path, pretrained_model_path)
        input_image.upload(upload_image, input_image, input_image)
        input_image_end.upload(upload_image, input_image_end, input_image_end)
        for i in range(LAYER_CAPACITY):
            layer_masks[i].upload(upload_image, layer_masks[i], layer_masks[i])
            layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]])
            layer_masks_end[i].upload(upload_image, layer_masks_end[i], layer_masks_end[i])
            layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]])
            layer_traj_controls[i][0].click(add_drag, layer_indices[i], None)
            layer_traj_controls[i][1].click(
                reset_states,
                [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
                [layer_regions[i], layer_regions_end[i]]
            )
            layer_traj_controls[i][2].click(
                delete_last_step,
                [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
                [layer_regions[i], layer_regions_end[i]]
            )
            layer_traj_controls[i][3].click(
                delete_last_drag,
                [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
                [layer_regions[i], layer_regions_end[i]]
            )
            layer_traj_files[i].change(
                upload_tracking_points,
                [layer_traj_files[i], layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
                [layer_regions[i], layer_regions_end[i]]
            )
            layer_regions[i].select(
                add_tracking_points,
                [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
                [layer_regions[i], layer_regions_end[i]]
            )
            layer_regions_end[i].select(
                add_tracking_points,
                [layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
                [layer_regions[i], layer_regions_end[i]]
            )
        run_button.click(
            run,
            [input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale,
             *layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics],
            [output_video, output_video_traj]
        )
        clear_button.click(
            reset_all_controls,
            [],
            [
                text_prompt, text_n_prompt, num_inference_steps, guidance_scale, seed,
                input_image, input_image_end, output_video, output_video_traj,
                *layer_masks, *layer_masks_end, *layer_regions, *layer_regions_end,
                *layer_controls, *layer_score_controls, *[button for temp_layer_controls in layer_traj_controls for button in temp_layer_controls], *layer_traj_files,
                *layer_sketch_controls, *layer_valids, *layer_statics
            ]
        )
        examples = gr.Examples(
            examples=[
                [
                    "__assets__/demos/demo_3/first_frame.jpg", "__assets__/demos/demo_3/last_frame.jpg",
                    "score",      "__assets__/demos/demo_3/layer_0.jpg", "__assets__/demos/demo_3/layer_0_last.jpg", 0.4, None,                                      None,                                 True, False,
                    "score",      "__assets__/demos/demo_3/layer_1.jpg", "__assets__/demos/demo_3/layer_1_last.jpg", 0.2, None,                                      None,                                 True, False,
                    "trajectory", "__assets__/demos/demo_3/layer_2.jpg", "__assets__/demos/demo_3/layer_2_last.jpg", -1,  "__assets__/demos/demo_3/trajectory.json", None,                                 True, False,
                    "sketch",     "__assets__/demos/demo_3/layer_3.jpg", "__assets__/demos/demo_3/layer_3_last.jpg", -1,  None,                                      "__assets__/demos/demo_3/sketch.mp4", True, False,
                    52
                ],
                [
                    "__assets__/demos/demo_4/first_frame.jpg", None,
                    "score",      "__assets__/demos/demo_4/layer_0.jpg", None, 0.0, None,                                      None,                                 True, True,
                    "trajectory", "__assets__/demos/demo_4/layer_1.jpg", None, -1,  "__assets__/demos/demo_4/trajectory.json", None,                                 True, False,
                    "sketch",     "__assets__/demos/demo_4/layer_2.jpg", None, -1,  None,                                      "__assets__/demos/demo_4/sketch.mp4", True, False,
                    "score", None, None, -1, None, None, False, False,
                    42
                ],
                [
                    "__assets__/demos/demo_5/first_frame.jpg", None,
                    "sketch",     "__assets__/demos/demo_5/layer_0.jpg", None, -1, None,                                      "__assets__/demos/demo_5/sketch.mp4", True, False,
                    "trajectory", "__assets__/demos/demo_5/layer_1.jpg", None, -1, "__assets__/demos/demo_5/trajectory.json", None,                                 True, False,
                    "score", None, None, -1, None, None, False, False,
                    "score", None, None, -1, None, None, False, False,
                    47
                ],
            ],
            inputs=[
                input_image, input_image_end,
                layer_controls[0], layer_masks[0], layer_masks_end[0], layer_score_controls[0], layer_traj_files[0], layer_sketch_controls[0], layer_valids[0], layer_statics[0],
                layer_controls[1], layer_masks[1], layer_masks_end[1], layer_score_controls[1], layer_traj_files[1], layer_sketch_controls[1], layer_valids[1], layer_statics[1],
                layer_controls[2], layer_masks[2], layer_masks_end[2], layer_score_controls[2], layer_traj_files[2], layer_sketch_controls[2], layer_valids[2], layer_statics[2],
                layer_controls[3], layer_masks[3], layer_masks_end[3], layer_score_controls[3], layer_traj_files[3], layer_sketch_controls[3], layer_valids[3], layer_statics[3],
                seed
            ],
        )
    demo.launch()