Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,592 Bytes
2a59fa8 9bd5e40 2a59fa8 9bd5e40 2a59fa8 9bd5e40 f01a554 9bd5e40 5cbadca 9bd5e40 5cbadca 9bd5e40 f01a554 9bd5e40 f01a554 9bd5e40 a61ba8d 9bd5e40 5cbadca f01a554 9bd5e40 2a59fa8 9bd5e40 531d0cf 2a59fa8 531d0cf 2a59fa8 9bd5e40 2a59fa8 9bd5e40 2a59fa8 9bd5e40 2a59fa8 9bd5e40 2a59fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import argparse
import datetime
import os
import json
import torch
import torchvision.transforms as transforms
from torchvision.transforms import functional as F
import spaces
from huggingface_hub import snapshot_download
import gradio as gr
from diffusers import DDIMScheduler
from lvdm.models.unet import UNetModel
from lvdm.models.autoencoder import AutoencoderKL, AutoencoderKL_Dualref
from lvdm.models.condition import FrozenOpenCLIPEmbedder, FrozenOpenCLIPImageEmbedderV2, Resampler
from lvdm.models.layer_controlnet import LayerControlNet
from lvdm.pipelines.pipeline_animation import AnimationPipeline
from lvdm.utils import generate_gaussian_heatmap, save_videos_grid, save_videos_with_traj
from einops import rearrange
import cv2
import decord
from PIL import Image
import numpy as np
from scipy.interpolate import PchipInterpolator
SAVE_DIR = "outputs"
os.makedirs(SAVE_DIR, exist_ok=True)
LENGTH = 16
WIDTH = 512
HEIGHT = 320
LAYER_CAPACITY = 4
DEVICE = "cuda"
WEIGHT_DTYPE = torch.bfloat16
PIPELINE = None
GENERATOR = None
os.makedirs("checkpoints", exist_ok=True)
snapshot_download(
"Yuppie1204/LayerAnimate-Mix",
local_dir="checkpoints/LayerAnimate-Mix",
)
TEXT_ENCODER = FrozenOpenCLIPEmbedder().eval()
IMAGE_ENCODER = FrozenOpenCLIPImageEmbedderV2().eval()
default_path = "checkpoints/LayerAnimate-Mix"
scheduler = DDIMScheduler.from_pretrained(default_path, subfolder="scheduler")
image_projector = Resampler.from_pretrained(default_path, subfolder="image_projector").eval()
vae, vae_dualref = None, None
if "I2V" or "Mix" in default_path:
vae = AutoencoderKL.from_pretrained(default_path, subfolder="vae").eval()
if "Interp" or "Mix" in default_path:
vae_dualref = AutoencoderKL_Dualref.from_pretrained(default_path, subfolder="vae_dualref").eval()
unet = UNetModel.from_pretrained(default_path, subfolder="unet").eval()
layer_controlnet = LayerControlNet.from_pretrained(default_path, subfolder="layer_controlnet").eval()
PIPELINE = AnimationPipeline(
vae=vae, vae_dualref=vae_dualref, text_encoder=TEXT_ENCODER, image_encoder=IMAGE_ENCODER, image_projector=image_projector,
unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
).to(device=DEVICE, dtype=WEIGHT_DTYPE)
if "Interp" or "Mix" in default_path:
PIPELINE.vae_dualref.decoder.to(dtype=torch.float32)
TRANSFORMS = transforms.Compose([
transforms.Resize(min(HEIGHT, WIDTH)),
transforms.CenterCrop((HEIGHT, WIDTH)),
])
SAMPLE_GRID = np.meshgrid(np.linspace(0, WIDTH - 1, 10, dtype=int), np.linspace(0, HEIGHT - 1, 10, dtype=int))
SAMPLE_GRID = np.stack(SAMPLE_GRID, axis=-1).reshape(-1, 1, 2)
SAMPLE_GRID = np.repeat(SAMPLE_GRID, LENGTH, axis=1) # [N, F, 2]
@spaces.GPU
def set_seed(seed, device):
np.random.seed(seed)
torch.manual_seed(seed)
return torch.Generator(device).manual_seed(seed)
@spaces.GPU
def set_model(pretrained_model_path):
global PIPELINE
scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
image_projector = Resampler.from_pretrained(pretrained_model_path, subfolder="image_projector").eval()
vae, vae_dualref = None, None
if "I2V" or "Mix" in pretrained_model_path:
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").eval()
if "Interp" or "Mix" in pretrained_model_path:
vae_dualref = AutoencoderKL_Dualref.from_pretrained(pretrained_model_path, subfolder="vae_dualref").eval()
unet = UNetModel.from_pretrained(pretrained_model_path, subfolder="unet").eval()
layer_controlnet = LayerControlNet.from_pretrained(pretrained_model_path, subfolder="layer_controlnet").eval()
PIPELINE.update(
vae=vae, vae_dualref=vae_dualref, text_encoder=TEXT_ENCODER, image_encoder=IMAGE_ENCODER, image_projector=image_projector,
unet=unet, layer_controlnet=layer_controlnet, scheduler=scheduler
)
PIPELINE.to(device=DEVICE, dtype=WEIGHT_DTYPE)
if "Interp" or "Mix" in pretrained_model_path:
PIPELINE.vae_dualref.decoder.to(dtype=torch.float32)
return pretrained_model_path
def upload_image(image):
image = TRANSFORMS(image)
return image
@spaces.GPU(duration=120)
def run(input_image, input_image_end, pretrained_model_path, seed,
prompt, n_prompt, num_inference_steps, guidance_scale,
*layer_args):
generator = set_seed(seed, DEVICE)
global layer_tracking_points
args_layer_tracking_points = [layer_tracking_points[i].value for i in range(LAYER_CAPACITY)]
args_layer_masks = layer_args[:LAYER_CAPACITY]
args_layer_masks_end = layer_args[LAYER_CAPACITY : 2 * LAYER_CAPACITY]
args_layer_controls = layer_args[2 * LAYER_CAPACITY : 3 * LAYER_CAPACITY]
args_layer_scores = list(layer_args[3 * LAYER_CAPACITY : 4 * LAYER_CAPACITY])
args_layer_sketches = layer_args[4 * LAYER_CAPACITY : 5 * LAYER_CAPACITY]
args_layer_valids = layer_args[5 * LAYER_CAPACITY : 6 * LAYER_CAPACITY]
args_layer_statics = layer_args[6 * LAYER_CAPACITY : 7 * LAYER_CAPACITY]
for layer_idx in range(LAYER_CAPACITY):
if args_layer_controls[layer_idx] != "score":
args_layer_scores[layer_idx] = -1
if args_layer_statics[layer_idx]:
args_layer_scores[layer_idx] = 0
mode = "i2v"
image1 = F.to_tensor(input_image) * 2 - 1
frame_tensor = image1[None].to(DEVICE) # [F, C, H, W]
if input_image_end is not None:
mode = "interpolate"
image2 = F.to_tensor(input_image_end) * 2 - 1
frame_tensor2 = image2[None].to(DEVICE)
frame_tensor = torch.cat([frame_tensor, frame_tensor2], dim=0)
frame_tensor = frame_tensor[None]
if mode == "interpolate":
layer_masks = torch.zeros((1, LAYER_CAPACITY, 2, 1, HEIGHT, WIDTH), dtype=torch.bool)
else:
layer_masks = torch.zeros((1, LAYER_CAPACITY, 1, 1, HEIGHT, WIDTH), dtype=torch.bool)
for layer_idx in range(LAYER_CAPACITY):
if args_layer_masks[layer_idx] is not None:
mask = F.to_tensor(args_layer_masks[layer_idx]) > 0.5
layer_masks[0, layer_idx, 0] = mask
if args_layer_masks_end[layer_idx] is not None and mode == "interpolate":
mask = F.to_tensor(args_layer_masks_end[layer_idx]) > 0.5
layer_masks[0, layer_idx, 1] = mask
layer_masks = layer_masks.to(DEVICE)
layer_regions = layer_masks * frame_tensor[:, None]
layer_validity = torch.tensor([args_layer_valids], dtype=torch.bool, device=DEVICE)
motion_scores = torch.tensor([args_layer_scores], dtype=WEIGHT_DTYPE, device=DEVICE)
layer_static = torch.tensor([args_layer_statics], dtype=torch.bool, device=DEVICE)
sketch = torch.ones((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
for layer_idx in range(LAYER_CAPACITY):
sketch_path = args_layer_sketches[layer_idx]
if sketch_path is not None:
video_reader = decord.VideoReader(sketch_path)
assert len(video_reader) == LENGTH, f"Input the length of sketch sequence should match the video length."
video_frames = video_reader.get_batch(range(LENGTH)).asnumpy()
sketch_values = [F.to_tensor(TRANSFORMS(Image.fromarray(frame))) for frame in video_frames]
sketch_values = torch.stack(sketch_values) * 2 - 1
sketch[0, layer_idx] = sketch_values
sketch = sketch.to(DEVICE)
heatmap = torch.zeros((1, LAYER_CAPACITY, LENGTH, 3, HEIGHT, WIDTH), dtype=WEIGHT_DTYPE)
heatmap[:, :, :, 0] -= 1
trajectory = []
traj_layer_index = []
for layer_idx in range(LAYER_CAPACITY):
tracking_points = args_layer_tracking_points[layer_idx]
if args_layer_statics[layer_idx]:
# generate pseudo trajectory for static layers
temp_layer_mask = layer_masks[0, layer_idx, 0, 0].cpu().numpy()
valid_flag = temp_layer_mask[SAMPLE_GRID[:, 0, 1], SAMPLE_GRID[:, 0, 0]]
valid_grid = SAMPLE_GRID[valid_flag] # [F, N, 2]
trajectory.extend(list(valid_grid))
traj_layer_index.extend([layer_idx] * valid_grid.shape[0])
else:
for temp_track in tracking_points:
if len(temp_track) > 1:
x = [point[0] for point in temp_track]
y = [point[1] for point in temp_track]
t = np.linspace(0, 1, len(temp_track))
fx = PchipInterpolator(t, x)
fy = PchipInterpolator(t, y)
t_new = np.linspace(0, 1, LENGTH)
x_new = fx(t_new)
y_new = fy(t_new)
temp_traj = np.stack([x_new, y_new], axis=-1).astype(np.float32)
trajectory.append(temp_traj)
traj_layer_index.append(layer_idx)
elif len(temp_track) == 1:
trajectory.append(np.array(temp_track * LENGTH))
traj_layer_index.append(layer_idx)
trajectory = np.stack(trajectory)
trajectory = np.transpose(trajectory, (1, 0, 2))
traj_layer_index = np.array(traj_layer_index)
heatmap = generate_gaussian_heatmap(trajectory, WIDTH, HEIGHT, traj_layer_index, LAYER_CAPACITY, offset=True)
heatmap = rearrange(heatmap, "f n c h w -> (f n) c h w")
graymap, offset = heatmap[:, :1], heatmap[:, 1:]
graymap = graymap / 255.
rad = torch.sqrt(offset[:, 0:1]**2 + offset[:, 1:2]**2)
rad_max = torch.max(rad)
epsilon = 1e-5
offset = offset / (rad_max + epsilon)
graymap = graymap * 2 - 1
heatmap = torch.cat([graymap, offset], dim=1)
heatmap = rearrange(heatmap, '(f n) c h w -> n f c h w', n=LAYER_CAPACITY)
heatmap = heatmap[None]
heatmap = heatmap.to(DEVICE)
sample = PIPELINE(
prompt,
LENGTH,
HEIGHT,
WIDTH,
frame_tensor,
layer_masks = layer_masks,
layer_regions = layer_regions,
layer_static = layer_static,
motion_scores = motion_scores,
sketch = sketch,
trajectory = heatmap,
layer_validity = layer_validity,
num_inference_steps = num_inference_steps,
guidance_scale = guidance_scale,
guidance_rescale = 0.7,
negative_prompt = n_prompt,
num_videos_per_prompt = 1,
eta = 1.0,
generator = generator,
fps = 24,
mode = mode,
weight_dtype = WEIGHT_DTYPE,
output_type = "tensor",
).videos
output_video_path = os.path.join(SAVE_DIR, "video.mp4")
save_videos_grid(sample, output_video_path, fps=8)
output_video_traj_path = os.path.join(SAVE_DIR, "video_with_traj.mp4")
vis_traj_flag = np.zeros(trajectory.shape[1], dtype=bool)
for traj_idx in range(trajectory.shape[1]):
if not args_layer_statics[traj_layer_index[traj_idx]]:
vis_traj_flag[traj_idx] = True
vis_traj = torch.from_numpy(trajectory[:, vis_traj_flag])
save_videos_with_traj(sample[0], vis_traj, os.path.join(SAVE_DIR, f"video_with_traj.mp4"), fps=8, line_width=7, circle_radius=10)
return output_video_path, output_video_traj_path
def update_layer_region(image, layer_mask):
if image is None or layer_mask is None:
return None, False
layer_mask_tensor = (F.to_tensor(layer_mask) > 0.5).float()
image = F.to_tensor(image)
layer_region = image * layer_mask_tensor
layer_region = F.to_pil_image(layer_region)
layer_region.putalpha(layer_mask)
return layer_region, True
def control_layers(control_type):
if control_type == "score":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
elif control_type == "trajectory":
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask):
first_mask_tensor = (F.to_tensor(first_mask) > 0.5).float()
first_frame = F.to_tensor(first_frame)
first_region = first_frame * first_mask_tensor
first_region = F.to_pil_image(first_region)
first_region.putalpha(first_mask)
transparent_background = first_region.convert('RGBA')
if last_frame is not None and last_mask is not None:
last_mask_tensor = (F.to_tensor(last_mask) > 0.5).float()
last_frame = F.to_tensor(last_frame)
last_region = last_frame * last_mask_tensor
last_region = F.to_pil_image(last_region)
last_region.putalpha(last_mask)
transparent_background_end = last_region.convert('RGBA')
width, height = transparent_background.size
transparent_layer = np.zeros((height, width, 4))
for track in tracking_points:
if len(track) > 1:
for i in range(len(track)-1):
start_point = np.array(track[i], dtype=np.int32)
end_point = np.array(track[i+1], dtype=np.int32)
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = max(np.sqrt(vx**2 + vy**2), 1)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
elif len(track) == 1:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
if last_frame is not None and last_mask is not None:
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
else:
trajectory_map_end = None
return trajectory_map, trajectory_map_end
def add_drag(layer_idx):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points.append([])
return
def delete_last_drag(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points.pop()
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def delete_last_step(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points[-1].pop()
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def add_tracking_points(layer_idx, first_frame, first_mask, last_frame, last_mask, evt: gr.SelectData): # SelectData is a subclass of EventData
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
global layer_tracking_points
tracking_points = layer_tracking_points[layer_idx].value
tracking_points[-1].append(evt.index)
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def reset_states(layer_idx, first_frame, first_mask, last_frame, last_mask):
global layer_tracking_points
layer_tracking_points[layer_idx].value = [[]]
tracking_points = layer_tracking_points[layer_idx].value
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def upload_tracking_points(tracking_path, layer_idx, first_frame, first_mask, last_frame, last_mask):
if tracking_path is None:
layer_region, _ = update_layer_region(first_frame, first_mask)
layer_region_end, _ = update_layer_region(last_frame, last_mask)
return layer_region, layer_region_end
global layer_tracking_points
with open(tracking_path, "r") as f:
tracking_points = json.load(f)
layer_tracking_points[layer_idx].value = tracking_points
trajectory_map, trajectory_map_end = visualize_trajectory(tracking_points, first_frame, first_mask, last_frame, last_mask)
return trajectory_map, trajectory_map_end
def reset_all_controls():
global layer_tracking_points
outputs = []
# Reset tracking points states
for layer_idx in range(LAYER_CAPACITY):
layer_tracking_points[layer_idx].value = [[]]
# Reset global components
outputs.extend([
"an anime scene.", # text prompt
"", # negative text prompt
50, # inference steps
7.5, # guidance scale
42, # seed
None, # input image
None, # input image end
None, # output video
None, # output video with trajectory
])
# Reset layer controls visibility
outputs.extend([None] * LAYER_CAPACITY) # layer masks
outputs.extend([None] * LAYER_CAPACITY) # layer masks end
outputs.extend([None] * LAYER_CAPACITY) # layer regions
outputs.extend([None] * LAYER_CAPACITY) # layer regions end
outputs.extend(["sketch"] * LAYER_CAPACITY) # layer controls
outputs.extend([gr.update(visible=False, value=-1) for _ in range(LAYER_CAPACITY)]) # layer score controls
outputs.extend([gr.update(visible=False) for _ in range(4 * LAYER_CAPACITY)]) # layer trajectory control 4 buttons
outputs.extend([gr.update(visible=False, value=None) for _ in range(LAYER_CAPACITY)]) # layer trajectory file
outputs.extend([None] * LAYER_CAPACITY) # layer sketch controls
outputs.extend([False] * LAYER_CAPACITY) # layer validity
outputs.extend([False] * LAYER_CAPACITY) # layer statics
return outputs
if __name__ == "__main__":
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center">LayerAnimate: Layer-level Control for Animation</h1><br>""")
gr.Markdown("""Gradio Demo for <a href='https://arxiv.org/abs/2501.08295'><b>LayerAnimate: Layer-level Control for Animation</b></a>.<br>
Github Repo can be found at https://github.com/IamCreateAI/LayerAnimate<br>
The template is inspired by Framer.""")
gr.Image(label="LayerAnimate: Layer-level Control for Animation", value="__assets__/figs/demos.gif", height=540, width=960)
gr.Markdown("""## Usage: <br>
1. Select a pretrained model via the "Pretrained Model" dropdown of choices in the right column.<br>
2. Upload frames in the right column.<br>
  1.1. Upload the first frame.<br>
  1.2. (Optional) Upload the last frame.<br>
3. Input layer-level controls in the left column.<br>
  2.1. Upload layer mask images for each layer, which can be obtained from many tools such as https://huggingface.co/spaces/yumyum2081/SAM2-Image-Predictor.<br>
  2.2. Choose a control type from "motion score", "trajectory" and "sketch".<br>
  2.3. For trajectory control, you can draw trajectories on layer regions.<br>
    2.3.1. Click "Add New Trajectory" to add a new trajectory.<br>
    2.3.2. Click "Reset" to reset all trajectories.<br>
    2.3.3. Click "Delete Last Step" to delete the lastest clicked control point.<br>
    2.3.4. Click "Delete Last Trajectory" to delete the whole lastest path.<br>
    2.3.5. Or upload a trajectory file in json format, we provide examples below.<br>
  2.4. For sketch control, you can upload a sketch video.<br>
4. We provide four layers for you to control, and it is not necessary to use all of them.<br>
5. Click "Run" button to generate videos. <br>
6. **Note: Remember to click "Clear" button to clear all the controls before switching to another example.**<br>
""")
layer_indices = [gr.Number(value=i, visible=False) for i in range(LAYER_CAPACITY)]
layer_tracking_points = [gr.State([[]]) for _ in range(LAYER_CAPACITY)]
layer_masks = []
layer_masks_end = []
layer_regions = []
layer_regions_end = []
layer_controls = []
layer_score_controls = []
layer_traj_controls = []
layer_traj_files = []
layer_sketch_controls = []
layer_statics = []
layer_valids = []
with gr.Row():
with gr.Column(scale=1):
for layer_idx in range(LAYER_CAPACITY):
with gr.Accordion(label=f"Layer {layer_idx+1}", open=True if layer_idx == 0 else False):
gr.Markdown("""<div align="center"><b>Layer Masks</b></div>""")
gr.Markdown("**Note**: Layer mask for the last frame is not required in I2V mode.")
with gr.Row():
with gr.Column():
layer_masks.append(gr.Image(
label="Layer Mask for First Frame",
height=320,
width=512,
image_mode="L",
type="pil",
))
with gr.Column():
layer_masks_end.append(gr.Image(
label="Layer Mask for Last Frame",
height=320,
width=512,
image_mode="L",
type="pil",
))
gr.Markdown("""<div align="center"><b>Layer Regions</b></div>""")
with gr.Row():
with gr.Column():
layer_regions.append(gr.Image(
label="Layer Region for First Frame",
height=320,
width=512,
image_mode="RGBA",
type="pil",
# value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)),
))
with gr.Column():
layer_regions_end.append(gr.Image(
label="Layer Region for Last Frame",
height=320,
width=512,
image_mode="RGBA",
type="pil",
# value=Image.new("RGBA", (512, 320), (255, 255, 255, 0)),
))
layer_controls.append(
gr.Radio(["score", "trajectory", "sketch"], label="Choose A Control Type", value="sketch")
)
layer_score_controls.append(
gr.Number(label="Motion Score", value=-1, visible=False)
)
layer_traj_controls.append(
[
gr.Button(value="Add New Trajectory", visible=False),
gr.Button(value="Reset", visible=False),
gr.Button(value="Delete Last Step", visible=False),
gr.Button(value="Delete Last Trajectory", visible=False),
]
)
layer_traj_files.append(
gr.File(label="Trajectory File", visible=False)
)
layer_sketch_controls.append(
gr.Video(label="Sketch", height=320, width=512, visible=True)
)
layer_controls[layer_idx].change(
fn=control_layers,
inputs=layer_controls[layer_idx],
outputs=[layer_score_controls[layer_idx], *layer_traj_controls[layer_idx], layer_traj_files[layer_idx], layer_sketch_controls[layer_idx]]
)
with gr.Row():
layer_valids.append(gr.Checkbox(label="Valid", info="Is the layer valid?"))
layer_statics.append(gr.Checkbox(label="Static", info="Is the layer static?"))
with gr.Column(scale=1):
pretrained_model_path = gr.Dropdown(
label="Pretrained Model",
choices=[
"checkpoints/LayerAnimate-Mix",
],
value="checkpoints/LayerAnimate-Mix",
)
text_prompt = gr.Textbox(label="Text Prompt", value="an anime scene.")
text_n_prompt = gr.Textbox(label="Negative Text Prompt", value="")
with gr.Row():
num_inference_steps = gr.Number(label="Inference Steps", value=50, minimum=1, maximum=1000)
guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
seed = gr.Number(label="Seed", value=42)
with gr.Row():
input_image = gr.Image(
label="First Frame",
height=320,
width=512,
type="pil",
)
input_image_end = gr.Image(
label="Last Frame",
height=320,
width=512,
type="pil",
)
run_button = gr.Button(value="Run")
with gr.Row():
output_video = gr.Video(
label="Output Video",
height=320,
width=512,
)
output_video_traj = gr.Video(
label="Output Video with Trajectory",
height=320,
width=512,
)
clear_button = gr.Button(value="Clear")
with gr.Row():
gr.Markdown("""
## Citation
```bibtex
@article{yang2025layeranimate,
author = {Yang, Yuxue and Fan, Lue and Lin, Zuzeng and Wang, Feng and Zhang, Zhaoxiang},
title = {LayerAnimate: Layer-level Control for Animation},
journal = {arXiv preprint arXiv:2501.08295},
year = {2025},
}
```
""")
pretrained_model_path.input(set_model, pretrained_model_path, pretrained_model_path)
input_image.upload(upload_image, input_image, input_image)
input_image_end.upload(upload_image, input_image_end, input_image_end)
for i in range(LAYER_CAPACITY):
layer_masks[i].upload(upload_image, layer_masks[i], layer_masks[i])
layer_masks[i].change(update_layer_region, [input_image, layer_masks[i]], [layer_regions[i], layer_valids[i]])
layer_masks_end[i].upload(upload_image, layer_masks_end[i], layer_masks_end[i])
layer_masks_end[i].change(update_layer_region, [input_image_end, layer_masks_end[i]], [layer_regions_end[i], layer_valids[i]])
layer_traj_controls[i][0].click(add_drag, layer_indices[i], None)
layer_traj_controls[i][1].click(
reset_states,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_traj_controls[i][2].click(
delete_last_step,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_traj_controls[i][3].click(
delete_last_drag,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_traj_files[i].change(
upload_tracking_points,
[layer_traj_files[i], layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_regions[i].select(
add_tracking_points,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
layer_regions_end[i].select(
add_tracking_points,
[layer_indices[i], input_image, layer_masks[i], input_image_end, layer_masks_end[i]],
[layer_regions[i], layer_regions_end[i]]
)
run_button.click(
run,
[input_image, input_image_end, pretrained_model_path, seed, text_prompt, text_n_prompt, num_inference_steps, guidance_scale,
*layer_masks, *layer_masks_end, *layer_controls, *layer_score_controls, *layer_sketch_controls, *layer_valids, *layer_statics],
[output_video, output_video_traj]
)
clear_button.click(
reset_all_controls,
[],
[
text_prompt, text_n_prompt, num_inference_steps, guidance_scale, seed,
input_image, input_image_end, output_video, output_video_traj,
*layer_masks, *layer_masks_end, *layer_regions, *layer_regions_end,
*layer_controls, *layer_score_controls, *[button for temp_layer_controls in layer_traj_controls for button in temp_layer_controls], *layer_traj_files,
*layer_sketch_controls, *layer_valids, *layer_statics
]
)
examples = gr.Examples(
examples=[
[
"__assets__/demos/demo_3/first_frame.jpg", "__assets__/demos/demo_3/last_frame.jpg",
"score", "__assets__/demos/demo_3/layer_0.jpg", "__assets__/demos/demo_3/layer_0_last.jpg", 0.4, None, None, True, False,
"score", "__assets__/demos/demo_3/layer_1.jpg", "__assets__/demos/demo_3/layer_1_last.jpg", 0.2, None, None, True, False,
"trajectory", "__assets__/demos/demo_3/layer_2.jpg", "__assets__/demos/demo_3/layer_2_last.jpg", -1, "__assets__/demos/demo_3/trajectory.json", None, True, False,
"sketch", "__assets__/demos/demo_3/layer_3.jpg", "__assets__/demos/demo_3/layer_3_last.jpg", -1, None, "__assets__/demos/demo_3/sketch.mp4", True, False,
52
],
[
"__assets__/demos/demo_4/first_frame.jpg", None,
"score", "__assets__/demos/demo_4/layer_0.jpg", None, 0.0, None, None, True, True,
"trajectory", "__assets__/demos/demo_4/layer_1.jpg", None, -1, "__assets__/demos/demo_4/trajectory.json", None, True, False,
"sketch", "__assets__/demos/demo_4/layer_2.jpg", None, -1, None, "__assets__/demos/demo_4/sketch.mp4", True, False,
"score", None, None, -1, None, None, False, False,
42
],
[
"__assets__/demos/demo_5/first_frame.jpg", None,
"sketch", "__assets__/demos/demo_5/layer_0.jpg", None, -1, None, "__assets__/demos/demo_5/sketch.mp4", True, False,
"trajectory", "__assets__/demos/demo_5/layer_1.jpg", None, -1, "__assets__/demos/demo_5/trajectory.json", None, True, False,
"score", None, None, -1, None, None, False, False,
"score", None, None, -1, None, None, False, False,
47
],
],
inputs=[
input_image, input_image_end,
layer_controls[0], layer_masks[0], layer_masks_end[0], layer_score_controls[0], layer_traj_files[0], layer_sketch_controls[0], layer_valids[0], layer_statics[0],
layer_controls[1], layer_masks[1], layer_masks_end[1], layer_score_controls[1], layer_traj_files[1], layer_sketch_controls[1], layer_valids[1], layer_statics[1],
layer_controls[2], layer_masks[2], layer_masks_end[2], layer_score_controls[2], layer_traj_files[2], layer_sketch_controls[2], layer_valids[2], layer_statics[2],
layer_controls[3], layer_masks[3], layer_masks_end[3], layer_score_controls[3], layer_traj_files[3], layer_sketch_controls[3], layer_valids[3], layer_statics[3],
seed
],
)
demo.launch() |