File size: 6,729 Bytes
acd1613
 
 
 
 
de6e097
39f28ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96f155b
39f28ba
96f155b
 
 
 
39f28ba
96f155b
 
 
39f28ba
96f155b
 
39f28ba
96f155b
 
 
39f28ba
96f155b
 
 
39f28ba
96f155b
 
39f28ba
 
 
 
 
533d4eb
 
5c6cca8
 
533d4eb
 
5c6cca8
de6e097
acd1613
 
 
 
 
 
 
 
 
 
 
5c6cca8
 
acd1613
 
 
 
 
 
 
 
a7e0386
acd1613
aa31153
28c3993
a7e0386
acd1613
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.vision.all import *
import PIL
import torchvision.transforms as transforms

##Extras por si pudiera reconstruir la imagen en HF tambi茅n
import os
import re

def subimages_from_directory(directorio):
  # Define el directorio a recorrer
  directorio = directorio

  # Define la expresi贸n regular para buscar los n煤meros X e Y en el nombre de archivo
  patron = re.compile(r"(.*)_(\d+)_(\d+)\.(png|jpg|tif)")

  windowlist = []
  coords = []

  # Recorre el directorio en busca de im谩genes
  for filename in os.listdir(directorio):
    match = patron.search(filename)
    if match:
        origname = match.group(1)
        x = int(match.group(2))
        y = int(match.group(3))
        #print(f"El archivo {filename} tiene los n煤meros X={x} e Y={y}")
        img = cv2.imread(os.path.join(directorio, filename))
        windowlist.append(img)
        coords.append((x, y))

  # Ordena las listas por coordenadas X e Y
  windowlist, coords = zip(*sorted(zip(windowlist, coords), key=lambda pair: (pair[1][0], pair[1][1])))
  wh, ww, chan = windowlist[0].shape
  origsize = tuple(elem1 + elem2 for elem1, elem2 in zip(coords[-1], (wh,ww)))

  return windowlist, coords, wh, ww, chan, origsize

def subimages_onlypath(directorio):
  # Define el directorio a recorrer
  directorio = directorio
  pathlist = []

  patron = re.compile(r"(.*)_(\d+)_(\d+)\.(png|jpg|tif)")

  for filename in os.listdir(directorio):
    match = patron.search(filename)
    if match:
        pathlist.append(os.path.join(directorio, filename))

  return pathlist

def ReconstructFromMW(windowlist, coords, wh, ww, chan, origsize):
  canvas = np.zeros((origsize[1], origsize[0], chan), dtype=np.uint8)
  for idx, window in enumerate(windowlist):
    canvas[coords[idx][1]:coords[idx][1]+wh, coords[idx][0]:coords[idx][0]+ww, :] = window
  return canvas

def get_list_tp(path):
  list_to_process = []  # Inicializar la lista que contendr谩 los nombres de los subdirectorios
  list_names = []
  # Recorrer los elementos del directorio
  for element in os.scandir(path):
      # Verificar si el elemento es un directorio
      if element.is_dir():
          # Agregar el nombre del subdirectorio a la lista
          windowlist, coords, wh, ww, chan, origsize = subimages_from_directory(element)
          list_to_process.append(ReconstructFromMW(windowlist, coords, wh, ww, chan, origsize))
          list_names.append(element.name)
  return list_to_process, list_names

def get_paths_tp(path):
  list_to_process = []  # Inicializar la lista que contendr谩 los nombres de los subdirectorios
  # Recorrer los elementos del directorio
  for element in os.scandir(path):
      # Verificar si el elemento es un directorio
      if element.is_dir():
          # Agregar el nombre del subdirectorio a la lista
          list_to_process.append(subimages_onlypath(element))
  return list_to_process

def process_multifolder(process_folders, result_folder):
  for folder in process_folders:
    folname = os.path.basename(os.path.dirname(folder[0]))
    destname = Path(result_folder)/folname
    os.makedirs(destname, exist_ok=True)
    for subimagepath in folder:
      img = PIL.Image.open(subimagepath)
      image = transforms.Resize((400,400))(img)
      tensor = transform_image(image=image)
      with torch.no_grad():
          outputs = model(tensor)
      outputs = torch.argmax(outputs,1)
      mask = np.array(outputs.cpu())
      mask[mask==1]=255
      mask=np.reshape(mask,(400,400))
      mask_img = Image.fromarray(mask.astype('uint8'))

      filename = os.path.basename(subimagepath)
      new_image_path = os.path.join(result_folder, folname, filename)
      mask_img.save(new_image_path)

def recombine_windows(results_folder_w, result_f_rec):
  imgs, nombres = get_list_tp(results_folder_w)
  os.makedirs(result_f_rec, exist_ok=True)

  for idx, image in enumerate(imgs):
    img = Image.fromarray(image)
    new_image_path = os.path.join(result_f_rec, nombres[idx] + '.tif')
    img.save(new_image_path, compression='tiff_lzw')
  return new_image_path

def process_single_image(single_image_path, base_f, pro_f, rsw_f, rsd_f):
  gss_single(single_image_path, pro_f, 0, "tif", True)
  process_multifolder(get_paths_tp(pro_f),rsw_f)
  pt = recombine_windows(rsw_f,rsd_f)
  shutil.rmtree(pro_f)
  shutil.rmtree(rsw_f)
  copiar_info_georref(single_image_path, pt)
  return pt

# from osgeo import gdal, osr

# def copiar_info_georref(entrada, salida):
#     try:
#         # Abrir el archivo GeoTIFF original
#         original_dataset = gdal.Open(entrada)

#         # Obtener la informaci贸n de georreferenciaci贸n del archivo original
#         original_projection = original_dataset.GetProjection()
#         original_geotransform = original_dataset.GetGeoTransform()

#         # Abrir la imagen resultado
#         result_dataset = gdal.Open(salida, gdal.GA_Update)

#         # Copiar la informaci贸n de georreferenciaci贸n del archivo original a la imagen resultado
#         result_dataset.SetProjection(original_projection)
#         result_dataset.SetGeoTransform(original_geotransform)

#         # Cerrar los archivos
#         original_dataset = None
#         result_dataset = None

#     except Exception as e:
#         print("Error: ", e)

###FIN de extras



#repo_id = "Ignaciobfp/segmentacion-dron-marras"
#learner = from_pretrained_fastai(repo_id)

device = torch.device("cpu") 
#model = learner.model
model = torch.jit.load("modelo_marras.pth")
model = model.cpu()

def transform_image(image):
    my_transforms = transforms.Compose([transforms.ToTensor(),
                                        transforms.Normalize(
                                            [0.485, 0.456, 0.406],
                                            [0.229, 0.224, 0.225])])
    image_aux = image
    return my_transforms(image_aux).unsqueeze(0).to(device)


# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
def predict(img):
    img_pil = PIL.Image.fromarray(img, 'RGB')
    image = transforms.Resize((400,400))(img_pil)
    tensor = transform_image(image=image)
    model.to(device)
    with torch.no_grad():
        outputs = model(tensor)
    outputs = torch.argmax(outputs,1)
    mask = np.array(outputs.cpu())
    mask[mask==1]=255
    mask=np.reshape(mask,(400,400))
    return Image.fromarray(mask.astype('uint8'))
    
# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(400, 400)), outputs=gr.outputs.Image(type="pil"), examples=['examples/1CA SUR_1200_800.png', 'examples/1CA SUR_4000_1200.png', 'examples/1CA SUR_4800_2000.png']).launch(share=False)