File size: 6,354 Bytes
cdd6bc5
58616a8
 
 
b3fb4dd
419474a
b3fb4dd
 
58616a8
cdd6bc5
58616a8
1379e6f
82a319f
1379e6f
 
b3fb4dd
707b3a3
 
 
82a319f
 
 
 
 
 
 
 
707b3a3
 
cdd6bc5
419474a
 
 
cdd6bc5
 
9ff87ee
156fabe
c9510a3
82a319f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58616a8
156fabe
c9510a3
cdd6bc5
 
58616a8
c9510a3
 
58616a8
c9510a3
cdd6bc5
58616a8
cdd6bc5
58616a8
 
 
 
 
 
 
419474a
 
 
58616a8
 
 
b3fb4dd
58616a8
 
 
b3fb4dd
58616a8
 
 
b3fb4dd
 
707b3a3
b3fb4dd
 
 
 
82a319f
49ebc1f
b3fb4dd
82a319f
 
 
 
b3fb4dd
49ebc1f
b3fb4dd
81f7a68
707b3a3
 
 
 
 
 
b3fb4dd
 
 
 
 
 
 
 
 
 
 
707b3a3
49ebc1f
58616a8
707b3a3
49ebc1f
 
b3fb4dd
58616a8
 
 
 
 
 
 
 
 
a79c5f2
58616a8
 
cdd6bc5
 
58616a8
c9510a3
58616a8
 
 
 
 
 
cdd6bc5
 
c9510a3
cdd6bc5
58616a8
a79c5f2
 
58616a8
707b3a3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import numpy as np
import os
import torch
from torch.utils.data import DataLoader

from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from .utils.data import FFTDataset
from .utils.models import DualEncoder, CNNKan, CNNKanFeaturesEncoder
from .utils.train import Trainer
from .utils.data_utils import collate_fn, Container
import yaml
import asyncio
from huggingface_hub import login
from collections import OrderedDict
import xgboost as xgb
from tqdm import tqdm
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score
from sklearn.model_selection import train_test_split
import warnings
import pandas as pd

warnings.filterwarnings("ignore")



from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "Conformer"
ROUTE = "/audio"

def create_dataframe(ds, save_name='test'):
    data = []
    # Iterate over the dataset
    pbar = tqdm(enumerate(ds))
    for i, batch in pbar:
        label = batch['label']
        features = batch['audio']['features']

        # Flatten the nested dictionary structure
        feature_dict = {'label': label}
        for k, v in features.items():
            if isinstance(v, dict):
                for sub_k, sub_v in v.items():
                    feature_dict[f"{k}_{sub_k}"] = sub_v[0].item()  # Aggregate (e.g., mean)
        data.append(feature_dict)
    # Convert to DataFrame
    df = pd.DataFrame(data)
    print(os.getcwd())
    df.to_csv(f"tasks/utils/dfs/{save_name}.csv", index=False)
    X = df.drop(columns=['label'])
    y = df['label']
    return X, y

@router.post(ROUTE, tags=["Audio Task"],
             description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
    """
    Evaluate audio classification for rainforest sound detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-1)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "chainsaw": 0,
        "environment": 1
    }
    # Load and prepare the dataset
    # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
    dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]

    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args_path = 'tasks/utils/config.yaml'
    data_args = Container(**yaml.safe_load(open(args_path, 'r'))['Data'])
    model_args = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder'])
    model_args_f = Container(**yaml.safe_load(open(args_path, 'r'))['CNNEncoder_f'])
    conformer_args = Container(**yaml.safe_load(open(args_path, 'r'))['Conformer'])
    boost_args = Container(**yaml.safe_load(open(args_path, 'r'))['XGBoost'])
    kan_args = Container(**yaml.safe_load(open(args_path, 'r'))['KAN'])

    test_dataset = FFTDataset(test_dataset, features=False)
    test_dl = DataLoader(test_dataset, batch_size=data_args.batch_size)

    # Watchlist to monitor performance on train and validation data

    model = CNNKan(model_args, conformer_args, kan_args.get_dict())
    model = model.to(device)
    state_dict = torch.load(data_args.checkpoint_path, map_location=torch.device('cpu'))
    new_state_dict = OrderedDict()
    for key, value in state_dict.items():
        if key.startswith('module.'):
            key = key[7:]
        new_state_dict[key] = value
    missing, unexpected = model.load_state_dict(new_state_dict)

    loss_fn = torch.nn.BCEWithLogitsLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)
    trainer = Trainer(model=model, optimizer=optimizer,
                      criterion=loss_fn, output_dim=model_args.output_dim, scaler=None,
                      scheduler=None, train_dataloader=None,
                      val_dataloader=None, device=device,
                      exp_num='test', log_path=None,
                      range_update=None,
                      accumulation_step=1, max_iter=np.inf,
                      exp_name=f"frugal_cnnencoder_inference")
    predictions, true_labels, acc = trainer.predict(test_dl, device=device)

    # Make random predictions (placeholder for actual model inference)
    print("accuracy: ", acc)
    print("predictions: ", len(predictions))
    print("true_labels: ", len(true_labels))

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)

    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }

    print('results: ', results)
    
    return results