File size: 11,251 Bytes
b3fb4dd
 
1379e6f
 
49ebc1f
766ed77
 
 
 
b3fb4dd
2f54ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3fb4dd
 
 
 
 
2f54ec8
 
b3fb4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f54ec8
 
b3fb4dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ebc1f
 
766ed77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ebc1f
 
 
 
 
 
 
 
 
 
 
2f54ec8
766ed77
2f54ec8
766ed77
 
2f54ec8
766ed77
2f54ec8
 
766ed77
 
 
 
 
 
 
 
 
a79c5f2
766ed77
 
 
 
2f54ec8
 
766ed77
 
 
 
 
2f54ec8
 
49ebc1f
 
 
 
 
 
 
 
 
 
 
 
 
2f54ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
import torch.nn as nn
from .Modules.conformer import ConformerEncoder, ConformerDecoder
from .Modules.mhsa_pro import RotaryEmbedding, ContinuousRotaryEmbedding
from .kan.fasterkan import FasterKAN
import numpy as np
import xgboost as xgb
import pandas as pd



class Sine(nn.Module):
    def __init__(self, w0=1.0):
        super().__init__()
        self.w0 = w0

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return torch.sin(self.w0 * x)


class MLPEncoder(nn.Module):
    def __init__(self, args):
        """
        Initialize an MLP with hidden layers, BatchNorm, and Dropout.

        Args:
            input_dim (int): Dimension of the input features.
            hidden_dims (list of int): List of dimensions for hidden layers.
            output_dim (int): Dimension of the output.
            dropout (float): Dropout probability (default: 0.0).
        """
        super(MLPEncoder, self).__init__()

        layers = []
        prev_dim = args.input_dim

        # Add hidden layers
        for hidden_dim in args.hidden_dims:
            layers.append(nn.Linear(prev_dim, hidden_dim))
            layers.append(nn.BatchNorm1d(hidden_dim))
            layers.append(nn.SiLU())
            if args.dropout > 0.0:
                layers.append(nn.Dropout(args.dropout))
            prev_dim = hidden_dim
        self.model = nn.Sequential(*layers)
        self.output_dim = hidden_dim

    def forward(self, x):
        # if x.dim() == 2:
        #     x = x.unsqueeze(-1)
        x = self.model(x)
        # x = x.mean(-1)
        return x
class ConvBlock(nn.Module):
  def __init__(self, args, num_layer) -> None:
    super().__init__()
    if args.activation == 'silu':
        self.activation = nn.SiLU()
    elif args.activation == 'sine':
        self.activation = Sine(w0=args.sine_w0)
    else:
        self.activation = nn.ReLU()
    in_channels = args.encoder_dims[num_layer-1] if num_layer < len(args.encoder_dims) else args.encoder_dims[-1]
    out_channels = args.encoder_dims[num_layer] if num_layer < len(args.encoder_dims) else args.encoder_dims[-1]
    self.layers = nn.Sequential(
        nn.Conv1d(in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=args.kernel_size,
                stride=1, padding='same', bias=False),
        nn.BatchNorm1d(num_features=out_channels),
        self.activation,
    )

  def forward(self, x: torch.Tensor) -> torch.Tensor:  
    return self.layers(x)

class CNNEncoder(nn.Module):
    def __init__(self, args) -> None:
        super().__init__()
        print("Using CNN encoder wit activation: ", args.activation, 'args avg_output: ', args.avg_output)
        if args.activation == 'silu':
            self.activation = nn.SiLU()
        elif args.activation == 'sine':
            self.activation = Sine(w0=args.sine_w0)
        else:
            self.activation = nn.ReLU()
        self.embedding = nn.Sequential(nn.Conv1d(in_channels = args.in_channels,
                kernel_size=3, out_channels = args.encoder_dims[0], stride=1, padding = 'same', bias = False),
                        nn.BatchNorm1d(args.encoder_dims[0]),
                        self.activation,
        )
        
        self.layers = nn.ModuleList([ConvBlock(args, i+1)
        for i in range(args.num_layers)])
        self.pool = nn.MaxPool1d(2)
        self.output_dim = args.encoder_dims[-1]
        self.min_seq_len = 2 
        self.avg_output = args.avg_output
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if len(x.shape)==2:
            x = x.unsqueeze(1)
        if len(x.shape)==3 and x.shape[-1]==1:
            x = x.permute(0,2,1)
        x = self.embedding(x)
        for m in self.layers:
            x = m(x)
            if x.shape[-1] > self.min_seq_len:
                x = self.pool(x)
        if self.avg_output:
            x = x.mean(dim=-1)
        return x


class MultiEncoder(nn.Module):
    def __init__(self, args, conformer_args):
        super().__init__()
        self.backbone = CNNEncoder(args)
        self.backbone.avg_output = False
        self.head_size = conformer_args.encoder_dim // conformer_args.num_heads
        self.rotary_ndims = int(self.head_size * 0.5)
        self.pe = RotaryEmbedding(self.rotary_ndims)
        self.encoder = ConformerEncoder(conformer_args)
        self.output_dim = conformer_args.encoder_dim
        self.avg_output = args.avg_output
        
    def forward(self, x):
        # Store backbone output in a separate tensor
        backbone_out = self.backbone(x)
        
        # Create x_enc from backbone_out
        if len(backbone_out.shape) == 2:
            x_enc = backbone_out.unsqueeze(1).clone()
        else:
            x_enc = backbone_out.permute(0,2,1).clone()
            
        RoPE = self.pe(x_enc, x_enc.shape[1])
        x_enc = self.encoder(x_enc, RoPE)
        
        if len(x_enc.shape) == 3:
            if self.avg_output:
                x_enc = x_enc.sum(dim=1)
            else:
                x_enc = x_enc.permute(0,2,1)
                
        # Return x_enc and the original backbone output
        return x_enc, backbone_out

class DualEncoder(nn.Module):
    def __init__(self, args_x, args_f, conformer_args) -> None:
        super().__init__()
        self.encoder_x = CNNEncoder(args_x)
        self.encoder_f = MultiEncoder(args_f, conformer_args)
        total_output_dim = args_x.encoder_dims[-1] + args_f.encoder_dims[-1]
        self.regressor = nn.Sequential(
            nn.Linear(total_output_dim, total_output_dim//2),
            nn.BatchNorm1d(total_output_dim//2),
            nn.SiLU(),
            nn.Linear(total_output_dim//2, 1)
        )
            
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x1 = self.encoder_x(x)
        x2, _ = self.encoder_f(x)
        logits = torch.cat([x1, x2], dim=-1)
        return self.regressor(logits).squeeze()

class CNNFeaturesEncoder(nn.Module):
    def __init__(self, xgb_model, args, mlp_hidden=64):
        super().__init__()
        self.xgb_model = xgb_model
        self.best_xgb_features = xgb_model.best_iteration + 1
        self.backbone = CNNEncoder(args)
        self.total_features = self.best_xgb_features + args.encoder_dims[-1]
        self.mlp = nn.Sequential(
            nn.Linear(self.total_features, mlp_hidden),
            nn.BatchNorm1d(mlp_hidden),
            nn.SiLU(),
            nn.Linear(mlp_hidden, mlp_hidden),
            nn.BatchNorm1d(mlp_hidden),
            nn.SiLU(),
            nn.Linear(mlp_hidden, 1),
        )

    def _create_features_data(self, features):
        # Handle batch processing
        batch_size = len(features)
        data = []

        # Iterate through each item in the batch
        for batch_idx in range(batch_size):
            feature_dict = {}
            for k, v in features[batch_idx].items():
                feature_dict[f"frequency_domain_{k}"] = v[0].item()
            data.append(feature_dict)

        return pd.DataFrame(data)
    def forward(self, x: torch.Tensor, f) -> torch.Tensor:
        x = self.backbone(x)
        x = x.mean(dim=-1)
        f_np = self._create_features_data(f)
        dtest = xgb.DMatrix(f_np)  # Convert input to DMatrix
        xgb_features = self.xgb_model.predict(dtest, pred_leaf=True).astype(np.float32)
        xgb_features = torch.tensor(xgb_features, dtype=torch.float32, device=x.device)
        x_f = torch.cat([x, xgb_features[:, :self.best_xgb_features]], dim=1)
        return self.mlp(x_f)

class CNNKan(nn.Module):
    def __init__(self, args, conformer_args, kan_args):
        super().__init__()
        self.backbone = CNNEncoder(args)
        # self.kan = KAN(width=kan_args['layers_hidden'])
        self.kan = FasterKAN(**kan_args)
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.backbone(x)
        x = x.mean(dim=1)
        return self.kan(x)

class CNNKanFeaturesEncoder(nn.Module):
    def __init__(self, xgb_model, args,  kan_args):
        super().__init__()
        self.xgb_model = xgb_model
        self.best_xgb_features = xgb_model.best_iteration + 1
        self.backbone = CNNEncoder(args)
        kan_args['layers_hidden'][0] += self.best_xgb_features
        self.kan = FasterKAN(**kan_args)

    def _create_features_data(self, features):
        # Handle batch processing
        batch_size = len(features)
        data = []

        # Iterate through each item in the batch
        for batch_idx in range(batch_size):
            feature_dict = {}
            for k, v in features[batch_idx].items():
                feature_dict[f"{k}"] = v[0].item()
            data.append(feature_dict)

        return pd.DataFrame(data)
    def forward(self, x: torch.Tensor, f) -> torch.Tensor:
        x = self.backbone(x)
        x = x.mean(dim=1)
        f_np = self._create_features_data(f)
        dtest = xgb.DMatrix(f_np)  # Convert input to DMatrix
        xgb_features = self.xgb_model.predict(dtest, pred_leaf=True).astype(np.float32)
        xgb_features = torch.tensor(xgb_features, dtype=torch.float32, device=x.device)
        x_f = torch.cat([x, xgb_features[:, :self.best_xgb_features]], dim=1)
        return self.kan(x_f)

class KanEncoder(nn.Module):
    def __init__(self, args):
        super().__init__()
        self.kan_x = FasterKAN(**args)
        self.kan_f = FasterKAN(**args)
        self.kan_out = FasterKAN(layers_hidden=[args['layers_hidden'][-1]*2, 8,8,1])

    def forward(self, x: torch.Tensor, f: torch.Tensor) -> torch.Tensor:
        x = self.kan_x(x)
        f = self.kan_f(f)
        out = torch.cat([x, f], dim=-1)
        return self.kan_out(out)


class MultiGraph(nn.Module):
    def __init__(self, graph_net, args):
        super().__init__()
        self.graph_net = graph_net
        self.cnn = CNNEncoder(args)
        total_output_dim = args.encoder_dims[-1]
        self.projection = nn.Sequential(
            nn.Linear(total_output_dim, total_output_dim // 2),
            nn.BatchNorm1d(total_output_dim // 2),
            nn.SiLU(),
            nn.Linear(total_output_dim // 2, 1)
        )

    def forward(self, g: torch.Tensor, x:torch.Tensor) -> torch.Tensor:
        # g_out = self.graph_net(g)
        x_out = self.cnn(x)
        # g_out = g_out.expand(x.shape[0], -1)
        # features = torch.cat([g_out, x_out], dim=-1)
        return self.projection(x_out)

class ImplicitEncoder(nn.Module):
    def __init__(self, transform_net, encoder_net):
        super().__init__()
        self.transform_net = transform_net
        self.encoder_net = encoder_net

    def get_weights_and_bises(self):
        state_dict = self.transform_net.state_dict()
        weights = tuple(
            [v.permute(1, 0).unsqueeze(-1).unsqueeze(0) for w, v in state_dict.items() if "weight" in w]
        )
        biases = tuple([v.unsqueeze(-1).unsqueeze(0) for w, v in state_dict.items() if "bias" in w])
        return weights, biases

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        transformed_x = self.transform_net(x.permute(0, 2, 1)).permute(0, 2, 1)
        inputs = self.get_weights_and_bises()
        outputs = self.encoder_net(inputs, transformed_x)
        return outputs