IlayMalinyak
kan
49ebc1f
raw
history blame
12.8 kB
import torch
from torch.cuda.amp import autocast
import numpy as np
import time
import os
import yaml
from matplotlib import pyplot as plt
import glob
from collections import OrderedDict
from tqdm import tqdm
import torch.distributed as dist
class Trainer(object):
"""
A class that encapsulates the training loop for a PyTorch model.
"""
def __init__(self, model, optimizer, criterion, train_dataloader, device, world_size=1, output_dim=2,
scheduler=None, val_dataloader=None, max_iter=np.inf, scaler=None,
grad_clip=False, exp_num=None, log_path=None, exp_name=None, plot_every=None,
cos_inc=False, range_update=None, accumulation_step=1, wandb_log=False, num_quantiles=1,
update_func=lambda x: x):
self.model = model
self.optimizer = optimizer
self.criterion = criterion
self.scaler = scaler
self.grad_clip = grad_clip
self.cos_inc = cos_inc
self.output_dim = output_dim
self.scheduler = scheduler
self.train_dl = train_dataloader
self.val_dl = val_dataloader
self.train_sampler = self.get_sampler_from_dataloader(train_dataloader)
self.val_sampler = self.get_sampler_from_dataloader(val_dataloader)
self.max_iter = max_iter
self.device = device
self.world_size = world_size
self.exp_num = exp_num
self.exp_name = exp_name
self.log_path = log_path
self.best_state_dict = None
self.plot_every = plot_every
self.logger = None
self.range_update = range_update
self.accumulation_step = accumulation_step
self.wandb = wandb_log
self.num_quantiles = num_quantiles
self.update_func = update_func
# if log_path is not None:
# self.logger =SummaryWriter(f'{self.log_path}/exp{self.exp_num}')
# # print(f"logger path: {self.log_path}/exp{self.exp_num}")
# print("logger is: ", self.logger)
def get_sampler_from_dataloader(self, dataloader):
if hasattr(dataloader, 'sampler'):
if isinstance(dataloader.sampler, torch.utils.data.DistributedSampler):
return dataloader.sampler
elif hasattr(dataloader.sampler, 'sampler'):
return dataloader.sampler.sampler
if hasattr(dataloader, 'batch_sampler') and hasattr(dataloader.batch_sampler, 'sampler'):
return dataloader.batch_sampler.sampler
return None
def fit(self, num_epochs, device, early_stopping=None, only_p=False, best='loss', conf=False):
"""
Fits the model for the given number of epochs.
"""
min_loss = np.inf
best_acc = 0
train_loss, val_loss, = [], []
train_acc, val_acc = [], []
lrs = []
# self.optim_params['lr_history'] = []
epochs_without_improvement = 0
# main_proccess = (torch.distributed.is_initialized() and torch.distributed.get_rank() == 0) or self.device == 'cpu'
main_proccess = True # change in a ddp setting
print(f"Starting training for {num_epochs} epochs")
print("is main process: ", main_proccess, flush=True)
global_time = time.time()
self.epoch = 0
for epoch in range(num_epochs):
self.epoch = epoch
start_time = time.time()
plot = (self.plot_every is not None) and (epoch % self.plot_every == 0)
t_loss, t_acc = self.train_epoch(device, epoch=epoch)
t_loss_mean = np.nanmean(t_loss)
train_loss.extend(t_loss)
global_train_accuracy, global_train_loss = self.process_loss(t_acc, t_loss_mean)
if main_proccess: # Only perform this on the master GPU
train_acc.append(global_train_accuracy.mean().item())
v_loss, v_acc = self.eval_epoch(device, epoch=epoch)
v_loss_mean = np.nanmean(v_loss)
val_loss.extend(v_loss)
global_val_accuracy, global_val_loss = self.process_loss(v_acc, v_loss_mean)
if main_proccess: # Only perform this on the master GPU
val_acc.append(global_val_accuracy.mean().item())
current_objective = global_val_loss if best == 'loss' else global_val_accuracy.mean()
improved = False
if best == 'loss':
if current_objective < min_loss:
min_loss = current_objective
improved = True
else:
if current_objective > best_acc:
best_acc = current_objective
improved = True
if improved:
model_name = f'{self.log_path}/{self.exp_num}/{self.exp_name}.pth'
print(f"saving model at {model_name}...")
torch.save(self.model.state_dict(), model_name)
self.best_state_dict = self.model.state_dict()
epochs_without_improvement = 0
else:
epochs_without_improvement += 1
current_lr = self.optimizer.param_groups[0]['lr'] if self.scheduler is None \
else self.scheduler.get_last_lr()[0]
lrs.append(current_lr)
print(f'Epoch {epoch}, lr {current_lr}, Train Loss: {global_train_loss:.6f}, Val Loss:'\
f'{global_val_loss:.6f}, Train Acc: {global_train_accuracy.round(decimals=4).tolist()}, '\
f'Val Acc: {global_val_accuracy.round(decimals=4).tolist()},'\
f'Time: {time.time() - start_time:.2f}s, Total Time: {(time.time() - global_time)/3600} hr', flush=True)
if epoch % 10 == 0:
print(os.system('nvidia-smi'))
if epochs_without_improvement == early_stopping:
print('early stopping!', flush=True)
break
if time.time() - global_time > (23.83 * 3600):
print("time limit reached")
break
return {"num_epochs":num_epochs, "train_loss": train_loss,
"val_loss": val_loss, "train_acc": train_acc, "val_acc": val_acc, "lrs": lrs}
def process_loss(self, acc, loss_mean):
if torch.cuda.is_available() and torch.distributed.is_initialized():
global_accuracy = torch.tensor(acc).cuda() # Convert accuracy to a tensor on the GPU
torch.distributed.reduce(global_accuracy, dst=0, op=torch.distributed.ReduceOp.SUM)
global_loss = torch.tensor(loss_mean).cuda() # Convert loss to a tensor on the GPU
torch.distributed.reduce(global_loss, dst=0, op=torch.distributed.ReduceOp.SUM)
# Divide both loss and accuracy by world size
world_size = torch.distributed.get_world_size()
global_loss /= world_size
global_accuracy /= world_size
else:
global_loss = torch.tensor(loss_mean)
global_accuracy = torch.tensor(acc)
return global_accuracy, global_loss
def load_best_model(self, to_ddp=True, from_ddp=True):
data_dir = f'{self.log_path}/exp{self.exp_num}'
# data_dir = f'{self.log_path}/exp29' # for debugging
state_dict_files = glob.glob(data_dir + '/*.pth')
print("loading model from ", state_dict_files[-1])
state_dict = torch.load(state_dict_files[-1]) if to_ddp else torch.load(state_dict_files[0],map_location=self.device)
if from_ddp:
print("loading distributed model")
# Remove "module." from keys
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.'):
while key.startswith('module.'):
key = key[7:]
new_state_dict[key] = value
state_dict = new_state_dict
# print("state_dict: ", state_dict.keys())
# print("model: ", self.model.state_dict().keys())
self.model.load_state_dict(state_dict, strict=False)
def check_gradients(self):
for name, param in self.model.named_parameters():
if param.grad is not None:
grad_norm = param.grad.norm().item()
if grad_norm > 10:
print(f"Large gradient in {name}: {grad_norm}")
def train_epoch(self, device, epoch):
"""
Trains the model for one epoch.
"""
if self.train_sampler is not None:
try:
self.train_sampler.set_epoch(epoch)
except AttributeError:
pass
self.model.train()
train_loss = []
train_acc = 0
total = 0
all_accs = torch.zeros(self.output_dim, device=device)
pbar = tqdm(self.train_dl)
for i, batch in enumerate(pbar):
if self.optimizer is not None:
self.optimizer.zero_grad()
loss, acc , y = self.train_batch(batch, i, device)
train_loss.append(loss.item())
all_accs = all_accs + acc
total += len(y)
pbar.set_description(f"train_acc: {acc}, train_loss: {loss.item()}")
if i > self.max_iter:
break
print("number of train_accs: ", train_acc)
return train_loss, all_accs/total
def train_batch(self, batch, batch_idx, device):
x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
x = x.to(device).float()
fft = fft.to(device).float()
y = y.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred, y)
loss.backward()
self.optimizer.step()
if self.scheduler is not None:
self.scheduler.step()
# get predicted classes
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss, acc, y
def eval_epoch(self, device, epoch):
"""
Evaluates the model for one epoch.
"""
self.model.eval()
val_loss = []
val_acc = 0
total = 0
all_accs = torch.zeros(self.output_dim, device=device)
pbar = tqdm(self.val_dl)
for i,batch in enumerate(pbar):
loss, acc, y = self.eval_batch(batch, i, device)
val_loss.append(loss.item())
all_accs = all_accs + acc
total += len(y)
pbar.set_description(f"val_acc: {acc}, val_loss: {loss.item()}")
if i > self.max_iter:
break
return val_loss, all_accs/total
def eval_batch(self, batch, batch_idx, device):
x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
x = x.to(device).float()
fft = fft.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y = y.to(device).float()
with torch.no_grad():
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred.squeeze(), y)
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
return loss, acc, y
def predict(self, test_dataloader, device):
"""
Returns the predictions of the model on the given dataset.
"""
self.model.eval()
total = 0
all_accs = 0
predictions = []
true_labels = []
pbar = tqdm(test_dataloader)
for i,batch in enumerate(pbar):
x, fft, y = batch['audio']['array'], batch['audio']['fft'], batch['label']
x = x.to(device).float()
fft = fft.to(device).float()
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
y = y.to(device).float()
with torch.no_grad():
y_pred = self.model(x_fft).squeeze()
loss = self.criterion(y_pred, y)
probs = torch.sigmoid(y_pred)
cls_pred = (probs > 0.5).float()
acc = (cls_pred == y).sum()
predictions.extend(cls_pred.cpu().numpy())
true_labels.extend(y.cpu().numpy())
all_accs += acc
total += len(y)
pbar.set_description("acc: {:.4f}".format(acc))
if i > self.max_iter:
break
return predictions, true_labels, all_accs/total